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Imagine saving even fractions of a cent on 
each of thousands of test patterns per chip. 
Multiply that by the billions of chips 
fabricated each year, and you have a glimpse 
of the benefits dynamic scan could offer. 

Dire predictions about the soaring cost of semiconductor test are all 
too familiar. Two factors primarily drive this cost: the number of test 
patterns applied to each chip and the time it takes to run each pattern. 
For example, typical semiconductor testing for each chip involves a 
set of as many as 1000 to 5000 test patterns—sets of input values and 
their associated (expected) output values. These test patterns are 
applied through scan chains that operate at about 25MHz. Depending 
on the size of the scan chains of the chip, a set of test patterns for a 
typical chip can take few seconds to execute per chip. It’s easy to see 
that even a small decrease in either the number of patterns or the time 
to execute them can quickly add up to big savings across millions of 
fabricated chips.  

This potential savings forms the basis for dynamic scan, a new 
approach to the well-established scan test methodology. Our initial 
studies, presented here, indicate that dynamic scan could easily 



reduce the time taken to apply the test patterns by about 40 percent. A 
more theoretical analysis shows a potential savings of as much as 80 
percent. 

CURRENT SCAN TEST USAGE 
Current design-for-test technology creates scan chains that 

automatic test pattern generation (ATPG) use as control and 
observation points. Basic scan technology attempts to maximize the 
number of scan elements, which supports the verification of design 
specifications such as timing.  

These scan chains provide controllability and observability for the 
automatically generated test patterns created later in the design 
process.1 All scan elements go into a set of possibly balanced chains 
to provide a single multichain scan configuration that automatic test 
pattern generators use in generating test patterns.  

Prior research, however, has recognized that the maximal scan 
configuration is overkill for ATPG. ATPG doesn’t need to scan all 
the memory elements to attain the required fault coverage. Instead, 
the partial-scan technique identifies a smaller set of memory 
elements, providing a single configuration that ATPG can use to 
attain the required fault coverage. 

However, a single scan chain configuration restricts an ATPG-
based method to using all the scan elements for all test patterns. 
Although the test must scan all memory elements at least once to 
detect the faults, it need not scan every element for every test pattern. 
A method that pares down the number of scan elements for each test 
pattern could provide substantial test application time and cost 
savings.  

Past solutions have used subsections of a single-scan-chain 
architecture to apply tests to different design modules. For this 
strategy to be effective, these modules  must be well-bounded and 
have independent test patterns,2,3 characteristics not found in today’s 
increasingly complex designs.  

Our work expands previously defined concepts for single scan 
chains to provide a new architecture for use in conjunction with 
ATPG. We want to apply test patterns to random logic, but use the 
shortest possible scan chains. To do so, we blend the benefits of using 
multiple scan chains4 with the reconfiguration method for single scan 
chains. These methods work together to reduce test data volume and 
application time.  

We intend this technology for use with random-logic ATPG and its 
patterns. Thus, our solution avoids breaking a basic concept 
employed by today’s scan-chain construction methods: Multiple scan 
chains that are active at any given time have a single path between 
the scan-ins and scan-outs of each scan chain. This distinguishes our 
solution apart from more radical solutions  that fan out scan chains 
from a single scan-input.5 

BASIS FOR DYNAMIC SCAN 
Figure 1 shows a circuit that has one scan chain containing five 

scan flip-flops. It has scan-in signal SI, and scan-out signal SO. The 
scan enable SE signal configures the flip-flops for scan operation, 
while the clock Clk operates the scan chain. 
 
Figure 1. Generalized circuit with a single-scan chain. 
 

Table 1 shows the stimuli and response vectors (after compaction 
but before random fill) needed to detect the faults in the circuit of 



Figure 1. The tester applies the stimuli at input a, and each of the five 
flip-flops, c0 through c4. It records the responses at outputs u and v, 
and each of the five flip-flops. The inputs or outputs are logic 0, logic 
1, or don’t-cares (denoted by X).  
Table 1. Stimuli and responses necessary to detect 
design faults in the circuit of Figure 1. 

Test 
patterns 

Stimulus (a,c0, …, c4) Response (u, v, c0, ..., c4) 

T1 1 X X 1 0 X 0 1 X X 1 X X 
T2  0 X X 0 1 1 1 X X X X X 1 
T3 X X X 1 0 0 0 1 0 X X 1 X 
T4 X X 1 1 0 1 1 X 1 X 0 X X 
 

We apply these test patterns in a three-step sequence:  

• scan-in Tn,− scan-out Tn–1; 
• stimulate inputs, measure outputs; and 
• pulse a capture clock. 

A tester first scans the data into the flip-flops, applies a stimulus to 
the inputs, and measures the circuit outputs. It then applies a pulse on 
the clock signals.  The pulse triggers an update of the scan chain flip-
flops and thus capture the design’s response to the test pattern. The 
tester then scans out the response; it simultaneously scans in the next 
test pattern. 

For the fixed configuration in Figure 1, the test patterns would 
operate the scan chain of length five. This scan operation dominates 
the test application time, taking five clock periods in the example 
scenario. Every test applying a stimulus to or measuring a response 
from the scan flip-flops would perform this scan operation and 
consume these five clock periods. 

Each test pattern in our example operates the scan chain; total test 
time per pattern is 5 cycles for scan in of Tn and scan out of Tn−1 plus 
1 cycle for updating the flip-flops plus 5 cycles for the scan out 
operation of the last test pattern (that could not be overlapped with 
other tests). Running the entire test of four patterns consumes (5 + 1)) 
× 4 + 5 = 29 cycles. Of this, the scan time is 25 clock cycles. The 
scan operation’s duration is independent of the number of scan values 
the test needs. The rigid configurations requires that the tester scan 
every cell, so typical ATPG algorithms would randomly fill the don’t 
cares and provide fully specified test patterns. 

In our work it is recognized that the scan chain doesn’t need to be 
the same for all tests. The scan chains should ideally provide access 
to the flip-flops that the tests need. Figure 2 shows the scan chain 
structure that would allow this access. 

 
Figure 2. Scan chain structure that allows dynamically configurable 
access to flip-flops. This scan chain can mimic test patterns that the 
scan needs.  

 
Signals that control the multiplexers let them either bypass or 

include a flip-flop in the scan chain. The multiplexer control signals 
can come from circuit inputs or from a control-register-like 
configuration. The configuration in Figure 2 can include or exclude 
any flip-flop from the scan chain, tailoring the scan chain to suit the 
test pattern. 

Table 2 lists the example test results for Figure 2. A “-“ signifies a 



value that was not applied in the test pattern by using a configuration 
of the scan chains that does not include the associated flip-flop. 
 
Table 2. Test stimuli and responses for the example in 
Figure 2. 

 
Test 
pattern 

Stimulus (a, c0, ..., c4) Response (u, v, c0, ..., c4) 

T1 1 - - 1 0 - 01 - - 1 X X 
T2 0 - - 0 1 1 1X - - X X 1 
T3 X - - 1 0 0 01 0 X X 1 X 
T4 X X 1 1 0 1  1X 1 - 0 - - 
 

Test T1 uses scan cells c2 and c3. Tests T2 and T3 use scan cells c2, 
c3, and c4. Test T4 uses c0, c1, c2, c3, andc4. The total scan time for all 
test patterns is 2 + 3 + 3 + 5 + 2 = 15 cycles (because we take 
advantage of the overlapping scan ins and scan outs), which is much 
less than the total scan time of 25 cycles for the original scan chain.  

This is a very expensive configuration in terms of supplying the 
multiplexer control signals. It would require many inputs control the 
multiplexers; using a control register, on the other hand, would 
require loading the register for every test pattern. Accounting for all 
these considerations might be impractical in an actual circuit layout. 

A more realistic approach limits the number of control signals by 
making multiple patterns use a single configuration. 

USING SCAN SEGMENTS 
A practical implementation of dynamic scan must focus on 

ensuring the following: 

•  Fewer configurations mean fewer (expensive) multiplexer 
control signals, so a practical implementation should use a 
minimum number of configurations.  

• An efficient implementation should order multiple test patterns 
to use a single configuration. This ordering should also 
maximize scan-in and scan-out overlap, and minimizing 
configuration setup overhead on a per-test-pattern basis. 
Patterns using the same configuration should run consecutively. 

• Most test patterns should use short scan chain configurations. 

So for dynamic scan to be useful, we must create segments to limit 
the number of supported configurations. Segments are contiguous 
scan chain components that a scan test must bypass or use as a set.  

The benefits that dynamic scan could provide depend on segment 
identification. Numerous methods are available for identifying scan 
segments, including topological traversals of the design or the use of 
ATPG engines and test patterns to guide the selection process.  

Figure 3 shows some example dynamic-scan configurations that 
use segments. These configurations account for the fact that all the 
patterns in our example set use the last three scan cells. 
 
Figure 3. Dynamic scan configurations that permit bypassing of the first 
two scan cells by routing signal si around these cells through an 
alternate path (a) or providing an alternate input, si2 (b).  
 

Preventing test patterns from excluding individual scan cells offers 
a simpler solution than full-blown dynamic scan, but doesn’t offer as 



large a reduction in test data volume and application time. In our 
example, the scan segments force pattern T1 to use the c4 scan cell. In 
this case, ATPG can randomly fill the don’t-care for c4 in this test 
pattern. The dynamic scan chain implementations shown in Figure 3 
provide an overall scan test application time (and proportional test 
data volume) of 3 + 3 + 3 + 5 + 5 = 19 cycles. 

Any reasonable dynamic-scan partitioning includes several 
patterns that use each of the different configurations. If only one 
pattern needs a configuration, test engineers should revisit the 
segment identification process. 

At one extreme of the dynamic-scan solution, a test can selectively 
bypass all scan elements. That is, segment length equals 1. This 
configuration, the most flexible one, provides maximum benefits at 
the expense of design-for-test and layout problems. 

At the other extreme, a test does not bypass any scan cell, and the 
original scan chain is the only configuration available to the test 
patterns. This least-flexible configuration does not effectively reduce 
test data volume or test application time, but it has minimal additional 
impact on the typical scan chain layout problems. Our goal falls in 
between these two extremes: We seek to achieve significant benefits 
with a small number of segments. 

DYNAMIC SCAN WITH MULTIPLE SCAN CHAINS 
Although our examples use a single scan chain, applying this to all 

scan chains independently would create significant overhead 
problems. For this reason, the most promising concept in making 
dynamic scan a reality is the use of multiple scan chains within a 
dynamic scan segment.  

To reduce overhead, a configuration must create multiple scan 
chain partitions. Each partition consists of parallel scan segments 
connected in series to segments of other partitions. Multiplexers, 
which allow activation or bypassing of all a partition’s scan 
segments, separate the partitions. 

Figure 4 shows a dynamic-scan design with multiple scan chains. 
ATPG patterns operate three parallel scan chains. The length of the 
three available scan chains depends on the control register values. For 
example, if 0 on the multiplexer control line selects the top input for 
all multiplexers, then 100 in the control register would give three 
short parallel chains consisting of the leftmost scan segments of 
partition 1. A 101 code would make three scan chains available, 
consisting of all the segments in partitions 1 and 3.  
 
Figure 4. Multiple scan chains with dynamic scan. ATPG test patterns 
operate three parallel scan chains, the lengths of which depend on the 
control register values. 
 

This implementation permits each active scan chain to incorporate 
one scan segment from each partition. Each partition’s scan segments 
should be as balanced in length as possible to achieve maximum 
benefits in terms of test application time. For maximum benefits, 
each partition should have the same number of scan chains.  

EXPERIMENTAL RESULTS 
Dynamic scan can significantly reduce test data volume and test 

application time. These benefits rely on the fact that designs have 
constraints (circuit structure dependencies) and that ATPG and its 
associated compaction algorithms are imperfect. Dynamic scan relies 
on the presence of several don’t-cares in test patterns, even after 



ATPG compaction. So to assess dynamic scan’s real-world potential, 
we determine the number of don’t-cares in test patterns (after 
compaction) for realistic circuit designs. 

Table 3 lists characteristics for the designs we used in our 
experiments. The design names include the number of primitive logic 
gates in this circuit, as perceived by the ATPG tool. The table lists 
the scan flip-flop count for these multichain scan designs. Although 
the table includes the fault count and fault coverage for the circuit’s 
associated scan test, the most relevant number is the total number of 
patterns for the original scan test without the implementation of 
dynamic scan. 
 
Table 3. Designs for dynamic scan analysis.  

Design 
name 

Numbe
r of 
scan 
flip-
flops 

Number 
of faults 
detecte
d 
(1000s) 

Numbe
r of 
test 
pattern
s 

Fault 
coverage 
(percentag
e) 

A: D118K 8,782 283 711 99.55 

B: D87K 8,570 270 1,154 96.90 

C: D90K 9,181 223 3,761 99.69 

D: D198K 15,180 463 1,951 91.64 

E: D296K 9,307 709 2,240 98.67 

F: D259K 1,024 262 270 99.50 

G: D37K 1,862 73 1,673 100.0 

H: D44K 2,851 78 1,725 99.91 

 
Typically, in any test set, the first few patterns detect many faults, 

and most subsequent test patterns detect very few. Thus the first few 
patterns are by nature fully specified (with very few don’t cares), they 
typically use the complete set of scan flip-flops.  

The remaining patterns are more likely targets for dynamic scan. 
Thus, for the following experiments, we created about 200 test 
patterns and forced them to use the complete scan chains. After 
performing fault simulation for these patterns, we let the ATPG tool 
perform all the compaction it could. We then counted the number of 
don’t-cares in the test patterns. 

Figure 5 shows that most test patterns have many don’t-cares, thus 
an approach like dynamic scan could reduce the test data volume and 
test application time. This data also shows that the compacted ATPG 
tests are so sparsely populated that it should be possible to identify 
partitions that cover many tests. 
//Author : You lost me in Figure 5—don’ t-cares as a percentage of 
what? All possible input values? And, what is the significance of 
“ after  random fill vectors” ? << I f you remember in the previous 
sections stimulus and measures can happen at inputs, outputs 
and scan-flip-flops. The don’ t cares are a percentage of the total. 
That is most test patterns have very few 1’s and 0’s and many 
don’ t cares. >>// 
Figure 5. Percentage of don’t-cares after a random fill of the test 
vectors. Because most test patterns have many don’t-cares, dynamic 
scan can reduce test data volume and test application time. 
 

We then collected data on the scan cell usage of test patterns that 
could benefit from dynamic scan chains. The data in Figure 6 shows 
that several scan cells were never used after simulation of the first 
few fully specified test patterns. Thus, if we can identify these scan 



cells, we should be able to place them in a single dynamic-scan 
segment of balanced scan chains and bypass them for the test patterns 
after the first 200. This single-partition dynamic-scan configuration is 
an attractive option in this type of situation. 

 
Figure 6. Unused scan cells after a random-fill of the test vectors. 
Identifying unused scan cells is beneficial because dynamic scan 
would permit subsequent tests to bypass them.  

 
Having more segments available in a dynamic-scan 

implementation improves the reduction in test data volume and test 
application time. The final goal of our research is to prove that by 
adding a few multiplexers and creating some partitions, dynamic scan 
could provide significant gains.  

We use a hypergraph-based algorithm that evaluates test pattern 
scan-cell usage to determine scan chain segments and partitions.7,8 
The basis for this algorithm is an undirected graph having all scan 
cells as its nodes. Nodes in the graph are connected to each other if 
they contain specified values as part of a single test pattern. We 
complete the graph for all test patterns. Thus, if two scan cells have 
specified values in n tests, n edges between the two nodes will 
represent the scan cells. We then partition the resulting undirected 
graph to find “waists” (cut points with the fewest edges). 

Figure 7 shows the reduction in test cost (data volume and 
application time) for the evaluated designs. We scaled the benefits of 
dynamic scan to the test set. The first few patterns used the entire 
scan chain and did not benefit from the dynamic scan configurations. 
 
Figure 7. Data volume reduction. Dynamic-scan technology reduced 
test costs (data volume and test application time). 
 
 

Figure 7 shows the results of three possible dynamic scan 
configurations using designs with four to 10 partitions. The results 
for a two-way split show the benefits of creating a segment that 
includes only the unused scan cells for the patterns that will benefit 
from dynamic scan. There are just two segments—one for the used 
scan cells and another for the unused cells.  

The second set of results shows the maximum experimental 
reduction achieved by using a hypergraph-based algorithm to create 
more partitions. The maximum theoretical reduction achieved for the 
experiment reflects the fact that the scan can bypass every don’t-care 
in the test patterns profiled in Figure 5. 

//Author : Rather  than summarizing points made in the ar ticle, 
please provide a conclusion that discusses ongoing work, future 
research directions, or  implications of this work on other  
disciplines or  areas.// 
Conclusions 
The results in this paper showed that simple modifications to existing 
scan technology can result in benefits in test application time and test 
data volume. The work presented focused on proving the technology. 
Further work is being performed in refining the dynamic scan 
technology. Efficient and better segment identification algorithms are 
being explored for the dynamic scan architecture. 
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