
COMPUTING PRACTICES

Dynamic
Scan:
Driving
Down the
Cost of
Test
Samitha Samaranayake
Nodari Sitchinava
Massachusetts Institute of Technology

Rohit Kapur
Minesh B. Amin
Thomas W. Williams

Synopsys Inc.

Imagine saving even fractions of a cent on
each of thousands of test patterns per chip.
Multiply that by the billions of chips
fabricated each year, and you have a glimpse
of the benefits dynamic scan could offer.

Dire predictions about the soaring cost of semiconductor test are all
too familiar. Two factors primarily drive this cost: the number of test
patterns applied to each chip and the time it takes to run each pattern.
For example, typical semiconductor testing for each chip involves a
set of as many as 1000 to 5000 test patterns—sets of input values and
their associated (expected) output values. These test patterns are
applied through scan chains that operate at about 25MHz. Depending
on the size of the scan chains of the chip, a set of test patterns for a
typical chip can take few seconds to execute per chip. It’s easy to see
that even a small decrease in either the number of patterns or the time
to execute them can quickly add up to big savings across millions of
fabricated chips.

This potential savings forms the basis for dynamic scan, a new
approach to the well-established scan test methodology. Our initial
studies, presented here, indicate that dynamic scan could easily

reduce the time taken to apply the test patterns by about 40 percent. A
more theoretical analysis shows a potential savings of as much as 80
percent.

CURRENT SCAN TEST USAGE
Current design-for-test technology creates scan chains that

automatic test pattern generation (ATPG) use as control and
observation points. Basic scan technology attempts to maximize the
number of scan elements, which supports the verification of design
specifications such as timing.

These scan chains provide controllability and observability for the
automatically generated test patterns created later in the design
process.1 All scan elements go into a set of possibly balanced chains
to provide a single multichain scan configuration that automatic test
pattern generators use in generating test patterns.

Prior research, however, has recognized that the maximal scan
configuration is overkill for ATPG. ATPG doesn’t need to scan all
the memory elements to attain the required fault coverage. Instead,
the partial-scan technique identifies a smaller set of memory
elements, providing a single configuration that ATPG can use to
attain the required fault coverage.

However, a single scan chain configuration restricts an ATPG-
based method to using all the scan elements for all test patterns.
Although the test must scan all memory elements at least once to
detect the faults, it need not scan every element for every test pattern.
A method that pares down the number of scan elements for each test
pattern could provide substantial test application time and cost
savings.

Past solutions have used subsections of a single-scan-chain
architecture to apply tests to different design modules. For this
strategy to be effective, these modules must be well-bounded and
have independent test patterns,2,3 characteristics not found in today’s
increasingly complex designs.

Our work expands previously defined concepts for single scan
chains to provide a new architecture for use in conjunction with
ATPG. We want to apply test patterns to random logic, but use the
shortest possible scan chains. To do so, we blend the benefits of using
multiple scan chains4 with the reconfiguration method for single scan
chains. These methods work together to reduce test data volume and
application time.

We intend this technology for use with random-logic ATPG and its
patterns. Thus, our solution avoids breaking a basic concept
employed by today’s scan-chain construction methods: Multiple scan
chains that are active at any given time have a single path between
the scan-ins and scan-outs of each scan chain. This distinguishes our
solution apart from more radical solutions that fan out scan chains
from a single scan-input.5

BASIS FOR DYNAMIC SCAN
Figure 1 shows a circuit that has one scan chain containing five

scan flip-flops. It has scan-in signal SI, and scan-out signal SO. The
scan enable SE signal configures the flip-flops for scan operation,
while the clock Clk operates the scan chain.

Figure 1. Generalized circuit with a single-scan chain.

Table 1 shows the stimuli and response vectors (after compaction
but before random fill) needed to detect the faults in the circuit of

Figure 1. The tester applies the stimuli at input a, and each of the five
flip-flops, c0 through c4. It records the responses at outputs u and v,
and each of the five flip-flops. The inputs or outputs are logic 0, logic
1, or don’t-cares (denoted by X).
Table 1. Stimuli and responses necessary to detect
design faults in the circuit of Figure 1.

Test
patterns

Stimulus (a,c0, …, c4) Response (u, v, c0, ..., c4)

T1 1 X X 1 0 X 0 1 X X 1 X X
T2 0 X X 0 1 1 1 X X X X X 1
T3 X X X 1 0 0 0 1 0 X X 1 X
T4 X X 1 1 0 1 1 X 1 X 0 X X

We apply these test patterns in a three-step sequence:

• scan-in Tn,− scan-out Tn–1;
• stimulate inputs, measure outputs; and
• pulse a capture clock.

A tester first scans the data into the flip-flops, applies a stimulus to
the inputs, and measures the circuit outputs. It then applies a pulse on
the clock signals. The pulse triggers an update of the scan chain flip-
flops and thus capture the design’s response to the test pattern. The
tester then scans out the response; it simultaneously scans in the next
test pattern.

For the fixed configuration in Figure 1, the test patterns would
operate the scan chain of length five. This scan operation dominates
the test application time, taking five clock periods in the example
scenario. Every test applying a stimulus to or measuring a response
from the scan flip-flops would perform this scan operation and
consume these five clock periods.

Each test pattern in our example operates the scan chain; total test
time per pattern is 5 cycles for scan in of Tn and scan out of Tn−1 plus
1 cycle for updating the flip-flops plus 5 cycles for the scan out
operation of the last test pattern (that could not be overlapped with
other tests). Running the entire test of four patterns consumes (5 + 1))
× 4 + 5 = 29 cycles. Of this, the scan time is 25 clock cycles. The
scan operation’s duration is independent of the number of scan values
the test needs. The rigid configurations requires that the tester scan
every cell, so typical ATPG algorithms would randomly fill the don’t
cares and provide fully specified test patterns.

In our work it is recognized that the scan chain doesn’t need to be
the same for all tests. The scan chains should ideally provide access
to the flip-flops that the tests need. Figure 2 shows the scan chain
structure that would allow this access.

Figure 2. Scan chain structure that allows dynamically configurable
access to flip-flops. This scan chain can mimic test patterns that the
scan needs.

Signals that control the multiplexers let them either bypass or

include a flip-flop in the scan chain. The multiplexer control signals
can come from circuit inputs or from a control-register-like
configuration. The configuration in Figure 2 can include or exclude
any flip-flop from the scan chain, tailoring the scan chain to suit the
test pattern.

Table 2 lists the example test results for Figure 2. A “-“ signifies a

value that was not applied in the test pattern by using a configuration
of the scan chains that does not include the associated flip-flop.

Table 2. Test stimuli and responses for the example in
Figure 2.

Test
pattern

Stimulus (a, c0, ..., c4) Response (u, v, c0, ..., c4)

T1 1 - - 1 0 - 01 - - 1 X X
T2 0 - - 0 1 1 1X - - X X 1
T3 X - - 1 0 0 01 0 X X 1 X
T4 X X 1 1 0 1 1X 1 - 0 - -

Test T1 uses scan cells c2 and c3. Tests T2 and T3 use scan cells c2,
c3, and c4. Test T4 uses c0, c1, c2, c3, andc4. The total scan time for all
test patterns is 2 + 3 + 3 + 5 + 2 = 15 cycles (because we take
advantage of the overlapping scan ins and scan outs), which is much
less than the total scan time of 25 cycles for the original scan chain.

This is a very expensive configuration in terms of supplying the
multiplexer control signals. It would require many inputs control the
multiplexers; using a control register, on the other hand, would
require loading the register for every test pattern. Accounting for all
these considerations might be impractical in an actual circuit layout.

A more realistic approach limits the number of control signals by
making multiple patterns use a single configuration.

USING SCAN SEGMENTS
A practical implementation of dynamic scan must focus on

ensuring the following:

• Fewer configurations mean fewer (expensive) multiplexer
control signals, so a practical implementation should use a
minimum number of configurations.

• An efficient implementation should order multiple test patterns
to use a single configuration. This ordering should also
maximize scan-in and scan-out overlap, and minimizing
configuration setup overhead on a per-test-pattern basis.
Patterns using the same configuration should run consecutively.

• Most test patterns should use short scan chain configurations.

So for dynamic scan to be useful, we must create segments to limit
the number of supported configurations. Segments are contiguous
scan chain components that a scan test must bypass or use as a set.

The benefits that dynamic scan could provide depend on segment
identification. Numerous methods are available for identifying scan
segments, including topological traversals of the design or the use of
ATPG engines and test patterns to guide the selection process.

Figure 3 shows some example dynamic-scan configurations that
use segments. These configurations account for the fact that all the
patterns in our example set use the last three scan cells.

Figure 3. Dynamic scan configurations that permit bypassing of the first
two scan cells by routing signal si around these cells through an
alternate path (a) or providing an alternate input, si2 (b).

Preventing test patterns from excluding individual scan cells offers
a simpler solution than full-blown dynamic scan, but doesn’t offer as

large a reduction in test data volume and application time. In our
example, the scan segments force pattern T1 to use the c4 scan cell. In
this case, ATPG can randomly fill the don’t-care for c4 in this test
pattern. The dynamic scan chain implementations shown in Figure 3
provide an overall scan test application time (and proportional test
data volume) of 3 + 3 + 3 + 5 + 5 = 19 cycles.

Any reasonable dynamic-scan partitioning includes several
patterns that use each of the different configurations. If only one
pattern needs a configuration, test engineers should revisit the
segment identification process.

At one extreme of the dynamic-scan solution, a test can selectively
bypass all scan elements. That is, segment length equals 1. This
configuration, the most flexible one, provides maximum benefits at
the expense of design-for-test and layout problems.

At the other extreme, a test does not bypass any scan cell, and the
original scan chain is the only configuration available to the test
patterns. This least-flexible configuration does not effectively reduce
test data volume or test application time, but it has minimal additional
impact on the typical scan chain layout problems. Our goal falls in
between these two extremes: We seek to achieve significant benefits
with a small number of segments.

DYNAMIC SCAN WITH MULTIPLE SCAN CHAINS
Although our examples use a single scan chain, applying this to all

scan chains independently would create significant overhead
problems. For this reason, the most promising concept in making
dynamic scan a reality is the use of multiple scan chains within a
dynamic scan segment.

To reduce overhead, a configuration must create multiple scan
chain partitions. Each partition consists of parallel scan segments
connected in series to segments of other partitions. Multiplexers,
which allow activation or bypassing of all a partition’s scan
segments, separate the partitions.

Figure 4 shows a dynamic-scan design with multiple scan chains.
ATPG patterns operate three parallel scan chains. The length of the
three available scan chains depends on the control register values. For
example, if 0 on the multiplexer control line selects the top input for
all multiplexers, then 100 in the control register would give three
short parallel chains consisting of the leftmost scan segments of
partition 1. A 101 code would make three scan chains available,
consisting of all the segments in partitions 1 and 3.

Figure 4. Multiple scan chains with dynamic scan. ATPG test patterns
operate three parallel scan chains, the lengths of which depend on the
control register values.

This implementation permits each active scan chain to incorporate
one scan segment from each partition. Each partition’s scan segments
should be as balanced in length as possible to achieve maximum
benefits in terms of test application time. For maximum benefits,
each partition should have the same number of scan chains.

EXPERIMENTAL RESULTS
Dynamic scan can significantly reduce test data volume and test

application time. These benefits rely on the fact that designs have
constraints (circuit structure dependencies) and that ATPG and its
associated compaction algorithms are imperfect. Dynamic scan relies
on the presence of several don’t-cares in test patterns, even after

ATPG compaction. So to assess dynamic scan’s real-world potential,
we determine the number of don’t-cares in test patterns (after
compaction) for realistic circuit designs.

Table 3 lists characteristics for the designs we used in our
experiments. The design names include the number of primitive logic
gates in this circuit, as perceived by the ATPG tool. The table lists
the scan flip-flop count for these multichain scan designs. Although
the table includes the fault count and fault coverage for the circuit’s
associated scan test, the most relevant number is the total number of
patterns for the original scan test without the implementation of
dynamic scan.

Table 3. Designs for dynamic scan analysis.

Design
name

Numbe
r of
scan
flip-
flops

Number
of faults
detecte
d
(1000s)

Numbe
r of
test
pattern
s

Fault
coverage
(percentag
e)

A: D118K 8,782 283 711 99.55

B: D87K 8,570 270 1,154 96.90

C: D90K 9,181 223 3,761 99.69

D: D198K 15,180 463 1,951 91.64

E: D296K 9,307 709 2,240 98.67

F: D259K 1,024 262 270 99.50

G: D37K 1,862 73 1,673 100.0

H: D44K 2,851 78 1,725 99.91

Typically, in any test set, the first few patterns detect many faults,

and most subsequent test patterns detect very few. Thus the first few
patterns are by nature fully specified (with very few don’t cares), they
typically use the complete set of scan flip-flops.

The remaining patterns are more likely targets for dynamic scan.
Thus, for the following experiments, we created about 200 test
patterns and forced them to use the complete scan chains. After
performing fault simulation for these patterns, we let the ATPG tool
perform all the compaction it could. We then counted the number of
don’t-cares in the test patterns.

Figure 5 shows that most test patterns have many don’t-cares, thus
an approach like dynamic scan could reduce the test data volume and
test application time. This data also shows that the compacted ATPG
tests are so sparsely populated that it should be possible to identify
partitions that cover many tests.
//Author : You lost me in Figure 5—don’ t-cares as a percentage of
what? All possible input values? And, what is the significance of
“ after random fill vectors” ? << I f you remember in the previous
sections stimulus and measures can happen at inputs, outputs
and scan-flip-flops. The don’ t cares are a percentage of the total.
That is most test patterns have very few 1’s and 0’s and many
don’ t cares. >>//
Figure 5. Percentage of don’t-cares after a random fill of the test
vectors. Because most test patterns have many don’t-cares, dynamic
scan can reduce test data volume and test application time.

We then collected data on the scan cell usage of test patterns that
could benefit from dynamic scan chains. The data in Figure 6 shows
that several scan cells were never used after simulation of the first
few fully specified test patterns. Thus, if we can identify these scan

cells, we should be able to place them in a single dynamic-scan
segment of balanced scan chains and bypass them for the test patterns
after the first 200. This single-partition dynamic-scan configuration is
an attractive option in this type of situation.

Figure 6. Unused scan cells after a random-fill of the test vectors.
Identifying unused scan cells is beneficial because dynamic scan
would permit subsequent tests to bypass them.

Having more segments available in a dynamic-scan

implementation improves the reduction in test data volume and test
application time. The final goal of our research is to prove that by
adding a few multiplexers and creating some partitions, dynamic scan
could provide significant gains.

We use a hypergraph-based algorithm that evaluates test pattern
scan-cell usage to determine scan chain segments and partitions.7,8
The basis for this algorithm is an undirected graph having all scan
cells as its nodes. Nodes in the graph are connected to each other if
they contain specified values as part of a single test pattern. We
complete the graph for all test patterns. Thus, if two scan cells have
specified values in n tests, n edges between the two nodes will
represent the scan cells. We then partition the resulting undirected
graph to find “waists” (cut points with the fewest edges).

Figure 7 shows the reduction in test cost (data volume and
application time) for the evaluated designs. We scaled the benefits of
dynamic scan to the test set. The first few patterns used the entire
scan chain and did not benefit from the dynamic scan configurations.

Figure 7. Data volume reduction. Dynamic-scan technology reduced
test costs (data volume and test application time).

Figure 7 shows the results of three possible dynamic scan
configurations using designs with four to 10 partitions. The results
for a two-way split show the benefits of creating a segment that
includes only the unused scan cells for the patterns that will benefit
from dynamic scan. There are just two segments—one for the used
scan cells and another for the unused cells.

The second set of results shows the maximum experimental
reduction achieved by using a hypergraph-based algorithm to create
more partitions. The maximum theoretical reduction achieved for the
experiment reflects the fact that the scan can bypass every don’t-care
in the test patterns profiled in Figure 5.

//Author : Rather than summarizing points made in the ar ticle,
please provide a conclusion that discusses ongoing work, future
research directions, or implications of this work on other
disciplines or areas.//
Conclusions
The results in this paper showed that simple modifications to existing
scan technology can result in benefits in test application time and test
data volume. The work presented focused on proving the technology.
Further work is being performed in refining the dynamic scan
technology. Efficient and better segment identification algorithms are
being explored for the dynamic scan architecture.

Acknowledgments

We thank the many reviewers who provided constructive criticism
that improved this article.

References
 1. V.D. Agrawal, S.K. Jain, and D. Singer, “A CAD System for Design for

Testability,” VLSI Design, Month 1984, pp. 46-54.
 2. S.P. Morley and R.A. Marlett, “Selectable Length Partial Scan: A Method

to Reduce Vector Length,” Proc. Int’ l Test Conf., IEEE CS Press, Los
Alamitos, Calif., 1991, pp. 385-392.

 3. S. Narayanan and M. Breuer, “Reconfiguration Techniques for a Single
Scan Chain,” IEEE Trans. Computer-Aided Design of Integrated Circuits
and Systems, vol. 14, no. 6, pp. 750-765.

 4. S. Narayanan, R. Gupta, and M.A. Breuer, “Optimal Configuring of
Multiple Scan Chains,” IEEE Trans. Computers, vol. 42, no. 9, pp. 1121-
1131.

 5. I. Hamzaoglu and J.H. Patel, “Reducing Test Application Time for Full
Scan Embedded Cores,” Proc. Int’ l Symp. Fault Tolerant Computing,
IEEE CS Press, Los Alamitos, Calif., 1999, pp. 260-267.

 7. G. Karypis and V. Kumar, hMetis 1.5: A Hypergraph Partitioning
Package, tech. report, Dept. of Computer Science, Univ. of Minn., 1998;
http://www.cs.umn.edu/~metis.

 8. G. Karypis and V. Kumar, Multilevel k-way Hypergraph Partitioning,
tech. report, Dept. of Computer Science, Univ. of Minn., 1998;
http://www.cs.umn.edu/~metis.

Samitha Samaranayake is a M.Eng student at the Massachusetts
Institute of Technology. His research interests are in the area of Test
Automation and Graph theory. Samaranayake received a S.B. in
Computer Science from MIT in 2002. He is a member of Tau Beta Pi
and Eta Kappa Nu. Contact him at samitha@mit.edu.

Nodari Sitchinava is a M.Eng. student at Massachusetts Institute of
Technology. His research interests are in the area of theoretical
computer science, in particular, graph theory, computational
geometry and analysis of algorithms. Sitchinava received his S.B
from Massachusetts Institute of Technology. He is a student member
of MIT Chapter of IEEE. Contact him at nodari@mit.edu.

Rohit Kapur is a principal engineer at Synopsys. His research
interests are in VLSI test. He received a PhD in computer
engineering from the University of Texas at Austin. Kapur is a senior
member of IEEE and a member of the IEEE Computer Society.
Contact him at rkapur@synopsys.com.

Minesh B. Amin is a Staff Engineer at Synopsys. His research
interests are parallel and distributed algorithms, verification and
test. He received a Ph.D. from University of Minnesota -- Twin
Cities. Contact him at mamin@synopsys.com.

Thomas W. Williams is a chief scientist at Synopsys. His research
interests are in VLSI test. He received a PhD in electrical
engineering from Colorado State University. He is a Fellow of the
IEEE and a member of the IEEE Computer Society and the ACM.
Contact him at tww@synopsys.com.

