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Abstract. In this paper, we study the MapReduce framework from an algorith-
mic standpoint and demonstrate the usefulness of our approach by designing and
analyzing efficient MapReduce algorithms for fundamental sorting, searching,
and simulation problems. This study is motivated by a goal ofultimately putting
the MapReduce framework on an equal theoretical footing with the well-known
PRAM and BSP parallel models, which would benefit both the theory and prac-
tice of MapReduce algorithms. Our PRAM and BSP simulation results imply
efficient MapReduce solutions for many applications, such as sorting, 2- and 3-
dimensional convex hulls, fixed-dimensional linear programming. All our algo-
rithms take a constant number of rounds under the commonly made assumptions
for the hardware running MapReduce.

1 Introduction

TheMapReduce framework[5, 6] is a programming paradigm for designing parallel and
distributed algorithms. It provides a simple programming interface that is specifically
designed to make it easy for a programmer to design a parallelprogram that can effi-
ciently perform a data-intensive computation. Moreover, it is a framework that allows
for parallel programs to be directly translated into computations for cloud computing
environments and server clusters (e.g., see [16]). This framework is gaining wide-spread
interest in systems domains, in that this framework is beingused in Google data cen-
ters and as a part of the open-source Hadoop system [19] for server clusters, which have
been deployed by a wide variety of enterprises3, including Yahoo!, IBM, The New York
Times, eHarmony, Facebook, and Twitter.

Building on pioneering work by Feldmanet al. [9] and Karloff et al. [14], our
interest in this paper is in studying the MapReduce framework from an algorithmic
standpoint, by designing and analyzing MapReduce algorithms for fundamental sort-
ing, searching, and simulation problems. Such a study couldbe a step toward ultimately
putting the MapReduce framework on an equal theoretical footing with the well-known
PRAM and BSP parallel models.

⋆ MADALGO is the Center for Massive Data Algorithmics, a center of the Danish National
Research Foundation.

3 Seehttp://en.wikipedia.org/wiki/Hadoop.



Still, we would be remiss if we did not mention that this framework is not without
its detractors. DeWitt and Stonebraker [7] mention severalissues they feel are short-
comings of the MapReduce framework, including that it seemsto require brute-force
enumeration instead of indexing for performing searches. Naturally, we feel that this
criticism is a bit harsh, as the theoretical limits of the MapReduce framework have yet
to be fully explored; hence, we feel that further theoretical study is warranted. Indeed,
this paper can be viewed as at least a partial refutation of the claim that the MapRe-
duce framework disallows indexed searching, in that we showhow to perform fast and
efficient multi-search in the MapReduce framework.

The MapReduce Framework.In the MapReduce framework, a computation is specified
as a sequence of map, shuffle, and reduce steps that operate ona setX = {x1, x2, . . . , xn}
of values:

– A map stepapplies a function,µ, to each value,xi, to produce a finite set of key-
value pairs(k, v). To allow for parallel execution, the computation of the function
µ(xi) must depend only onxi.

– A shuffle stepcollects all the key-value pairs produced in the previous map step,
and produces a set of lists,Lk = (k; v1, v2, . . .), where each such list consists of
all the values,vj , such thatkj = k for a keyk assigned in the map step.

– A reduce stepapplies a function,ρ, to each listLk = (k; v1, v2, . . .), formed in
the shuffle step, to produce a set of values,y1, y2, . . . . The reduction function,ρ, is
allowed to be defined sequentially onLk, but should be independent of other lists
Lk′ wherek′ 6= k.

The parallelism of the MapReduce framework comes from the fact that each map or
reduce operation can be executed on a separate processor independently of others. Thus,
the user simply defines the functionsµ andρ, and the system automatically schedules
map-shuffle-reduce steps and routes data to available processors, including provisions
for fault tolerance.

The outputs from a reduce step can, in general, be used as inputs to another round
of map-shuffle-reduce steps. Thus, a typical MapReduce computation is described as a
sequence of map-shuffle-reduce steps that perform a desiredaction in a series ofrounds
that produce the algorithm’s output after the last reduce step.

Evaluating MapReduce Algorithms.Ideally, we desire the number of rounds in a MapRe-
duce algorithm to be a constant. For example, consider an often-cited MapReduce al-
gorithm to count all the instances of words in a document. Given a document,D, we
define the set of input valuesX to be all the words in the document and we then pro-
ceed as follows: the Map step, for each word,w, in the document, mapsw to (w, 1).
Then in the Shuffle step, collects all the(w, 1) pairs for each word, producing a list
(w; 1, 1, . . . , 1), with the number of1’s in each such list equal to the number of timesw
appears in the document. Finally, the Reduce step, scans each list (w; 1, 1, . . . , 1), sum-
ming up the number of1’s in each such list, and outputs pairs(w, nw) as a final value,
wherenw is the number of1’s in the list for eachw. This single-round computation
clearly computes the number of times each word appears inD.



The number of rounds in a MapReduce algorithm is not always equal to1, however,
and there are, in fact, several metrics that one can use to measure the efficiency of a
MapReduce algorithm over the course of its execution, including the following:

– We can considerR, thenumber of roundsof map-shuffle-reduce that the algorithm
uses.

– If we let nr,1, nr,2, . . . denote the mapper and reducer I/O sizes for roundr, so that
nr,i is the size of the inputs and outputs for mapper/reduceri in roundr, then we
can defineCr, the communication complexity of roundr, to be the total size of
the inputs and outputs for all the mappers and reducers in round r, that is,Cr =
∑

i nr,i. We can also defineC =
∑R−1

r=0 Cr – thecommunication complexityfor
the entire algorithm.

– We can lettr denote theinternal running timefor roundr, which is the maximum
internal running time taken by a mapper or reducer in roundr, where we assume
tr ≥ maxi{nr,i}, since a mapper or reducer must have a running time that is at
least the size of its inputs and outputs. We can also definetotal internal running
time, t =

∑R−1
r=0 tr, for the entire algorithm, as well.

We can make a crude calibration of a MapReduce algorithm using the following addi-
tional parameters:

– L: the latencyL of the shuffle network, which is the number of steps that a mapper
or reducer has to wait until it receives its first input in a given round.

– B: the bandwidth of the shuffle network, which is the number of elements in a
MapReduce computation that can be delivered by the shuffle network in any time
unit.

Given these parameters, a lower bound for the total running time, T , of an imple-
mentation of a MapReduce algorithm can be characterized as follows:

T = Ω

(

R−1
∑

r=0

(tr + L + Cr/B)

)

= Ω(t + RL + C/B).

For example, given a documentD of n words, the simple word-counting MapReduce al-
gorithm given above has a worst-case performance ofR = 1, C = Θ(n), andt = Θ(n);
hence, its worst-case time performanceT = Θ(n), which is no faster than sequential
computation. Unfortunately, such performance could be quite common in the natural-
language documents. For instance, in the Brown Corpus [15],the word “the” accounts
for 7% of all word occurrences.

Note, therefore, that focusing exclusively onR, the number of rounds in a MapRe-
duce algorithm, can actually lead to an inefficient algorithm. For example, if we focus
only on the number of rounds,R, then the most efficient algorithm would always be the
trivial one-round algorithm, which maps all the inputs to a single key and then has the
reducer for this key perform a standard sequential algorithm to solve the problem. This
approach would run in one round, but it would not use any parallelism; hence, it would
be relatively slow compared to an algorithm that was more “parallel.”



Memory-Bound and I/O-Bound MapReduce Algorithms.So as to steer algorithm de-
signers away from the trivial one-round algorithm, recent algorithmic formalizations of
the MapReduce paradigm have focused primarily on optimizing the round complexity
bound,R, while restricting the memory size or input/output size forreducers. Karloff
et al. [14] define their MapReduce model, MRC, so that each reducer’s I/O size is re-
stricted to beO(N1−ǫ) for some small constantǫ > 0, and Feldmanet al. [9] define
their model, MUD, so that reducer memory size is restricted to beO(logc N), for some
constantc ≥ 0, and reducers are further required to process their inputs in a single pass.
These restrictions limit the feasibility of the trivial one-round algorithm for solving a
problem in the MapReduce framework and instead compel algorithm designers to make
better utilization of parallelism.

In this paper, we follow the I/O-bound approach, as it seems to correspond better
to the way reducer computations are specified, but we take a somewhat more general
characterization than Karloffet al.[14], in that we do not bound the I/O size for reducers
explicitly to beO(N1−ǫ), but instead allow it to be an arbitrary parameter:

– We defineM to be an upper bound on theI/O-buffer memory sizefor all reducers
used in a given MapReduce algorithm. That is, we predefineM to be a parameter
and require that∀r, i : nr,i ≤ M.

We then can useM in the design and/or analysis of each of our MapReduce algorithms.
For instance, if each round of an algorithm has a reducer withan I/O size of at mostM ,
then we say that this algorithm is anI/O-memory-bound MapReduce algorithmwith
parameterM . In addition, if each round has a reducer with an I/O size proportional to
M (whose processing probably dominates the reducer’s internal running time), then we
can give a simplified lower bound on the time,T , for such an algorithm as

T = Ω(R(M + L) + C/B).

This approach therefore can characterize the limits of parallelism that are possi-
ble in a MapReduce algorithm and it also shows that we should concentrate on the
round complexity and communication complexity of a MapReduce algorithm in char-
acterizing its performance.4 Of course, such bounds forR andC may depend onM ,
but that is fine, for similar characterizations are common inthe literature on external-
memory algorithms (e.g., see [1, 3, 4, 18]). In the rest of thepaper, when we talk about
the MapReduce model, we always mean the I/O-memory-bound MapReduce model.

Our Contributions.In Section 2 we present a BSP-like computational framework which
we prove to be equivalent to the I/O-memory-bound MapReducemodel. This formula-
tion is more familiar in the distributed algorithms community, making the design and
analysis of algorithms more intuitive. The new formulationallows a simple simulation
result of the BSP algorithms in the MapReduce model with no slowdown in the number
of rounds, resulting in straightforward MapReduce implementations of a large number
of existing algorithms for BSP model and its variants.

4 These measures correspond naturally with thetime and work bounds used to characterize
PRAM algorithms (e.g., see [12]).



In Section 3 we present simulation of CRCW PRAM algorithms inour general-
ized MapReduce model, extending the EREW PRAM simulation results of Karloff et
al. [14]5 (which also holds in our generalized model). The only prior known simulation
of CRCW PRAM algorithm on MapReduce was via the standard CRCW-to-EREW
simulation (which incursO(log2 P ) factor slowdown for aP -processor PRAM al-
gorithm) and then applying the EREW simulation of Karloff etal. [14]. In contrast,
our simulation achieves onlyΘ(logM P ) slowdown in the round complexity, which is
asymptotically optimal for a generic simulation.

Our CRCW PRAM simulation results achieve their efficiency through the use of
an implicit data structure we callinvisible funnel trees. It can be viewed as placing
virtual multi-way trees rooted at the input items, which funnel concurrent read and
write requests to the data items, but are never explicitly constructed.

Our simulation results immediately imply solutions withO(logM N) round and
O(N logM N) communication complexities to problems of findingconvex hulland
solvingfixed-dimensional linear programming.

For problems with no known constant time CRCW PRAM solutionswe show that
we can design efficient algorithms directly in our generic MapReduce framework. Specif-
ically, in Section 4 using the idea ofinvisible funnel treeswe develop solutions to the
fundamental problems ofprefix sumsand randomizedindexingof the input.

Finally, what is perhaps most unusual about the MapReduce framework is that there
is no explicit notion of “place” for where data is stored nor for where computations
are performed. This property is perhaps what led DeWitt and Stonebraker [7] to say
that it does not support indexed searches. Nevertheless, inSection 5 we show that the
MapReduce framework does in fact support efficientmulti-searching– the problem of
searching for a number of keys in a search tree. Our solution builds a low congestion
search structure similar to [10]. However, to keep the communication complexity low,
our structure is smaller, forcing us to process the queries in smaller batches, which we
pipeline to maintain the optimal round complexity.

For ease of exposition letλ = logM N . All our algorithms exhibitO(λ) round and
O(λN) communication complexities. Note, that in practice it is reasonable to assume
thatM = Ω(N ǫ) for some constantǫ > 0, resulting inλ = O(1), i.e. constant round
and linear communication complexities for all our algorithms.

2 Generic MapReduce Computations

In this section we define a BSP-like computational model thatcaptures the MapReduce
framework.

Consider a set of computing nodesV . Let Av(r) be a set of items associated with
each nodev ∈ V in roundr. Av(r) defines the state ofv. Letf be a sequential function
defined for all nodes. Functionf takes as input the stateAv(r) of a nodev and returns
a new setBv(r), in the process destroyingAv(r). Each item ofBv(r) is of the form

5 Their original proof was identified for the CREW PRAM model, but there was a flaw in that
version, which could violate the I/O-buffer-memory size constraint during a CREW PRAM
simulation. Based on a personal communication, we have learned that the subsequent version
of their paper will identify their proof as being for the EREWPRAM.



(w, a), wherew ∈ V anda is a new item. We define the following computation which
proceeds inR rounds.

At the beginning of the computation only theinput nodesv have non-empty states
Av(0). The state of an input node consists of a single input item.

In roundr, each nodev with non-empty stateAv(r) 6= ∅ performs the following.
First,v applies functionf on Av(r). This results in the new setBv(r) and deletion of
Av(r). Then, for each elementb = (w, a) ∈ Bv(r), nodev sends itema to nodew.
Note that ifw = v, thenv sendsa back to itself. As a result of this process, each node
may receive a set of items from others. Finally, the set of received items at each nodev
defines the new stateAv(r+1) for the next round. The items comprising the non-empty
statesAv(r) afterR rounds define the outputs of the entire computation at which point
the computation halts.

The number of roundsR denotes theround complexityof the computation. The to-
tal number of all the items sent (or, equivalently, received) by the nodes in each round
r defines thecommunication complexityCr of roundr, that is,Cr =

∑

v |Bv(r)|. Fi-
nally, the communication complexityC of the entire computation is defined asC =
∑R−1

r=0 Cr =
∑R−1

r=0

∑

v |Bv(r)|. Note that this definition implies that nodesv whose
statesAv(r) are empty at the beginning of roundr do not contribute to the communi-
cation complexity. Thus, the setV of nodes can be infinite. But, as long as only a finite
number of nodes have non-emptyAv(r) at the beginning of each round, the communi-
cation complexity of the computation is bounded.

Observe that during the computation, in order for nodev to send items to nodew
in roundr, v should know the label of the destinationw, which can be obtained byv
in the following possible ways (or any combination thereof): 1) the link(v, w) can be
encoded inf as a function of the label ofv and roundr, 2) some node might send the
label ofw to v in the previous round, or 3) nodev might keep the label ofw as part of
its state by constantly sending it to itself.

Thus, the above computation can be viewed as a computation onadynamicdirected
graphG = (V, E), where an edge(v, w) ∈ E in roundr represents a possible commu-
nication link betweenv andw during that round. The encoding of edges(v, w) as part
of functionf is equivalent to defining animplicit graph [13]; keeping all edges within
a node throughout the computation is equivalent to defining astaticgraph. For ease of
exposition, we define the following primitive operations that can be used withinf at
each nodev:

– create an item; delete an item; modify an item; keep itemx (that is, the itemx will
be sent tov itself by creating an item(v, x) ∈ Bv(r)); send an itemx to nodew
(create an item(w, x) ∈ Bv(r)).

– create an edge; delete an edge. This is essentially the same as create an item and
delete an item, since explicit edges are just maintained as items at nodes. This
operations will simplify exposition when dealing with explicitly defined graphsG
on which computation is performed.

The following theorem shows that the above framework captures the essence of
computation in the MapReduce framework.6

6 Due to space constraints, all omitted proofs can be found in Appendix A.



Theorem 1. Let G = (V, E) andf be defined as above such that in each round each
nodev ∈ V sends, keeps and receives at mostM items. Then computation onG with
round complexityR and communication complexityC can be simulated in the I/O-
memory-bound MapReduce model with the same round and communication complexi-
ties.

The above theorem gives an abstract way of designing MapReduce algorithms.
More precisely, to design a MapReduce algorithm, we define graphG and a sequen-
tial function f to be performed at each nodev ∈ V . This is akin to designing BSP
algorithms and is a more intuitive way than defining Map and Reduce functions.

Note that in the above framework we can easily implement a global loop primitive
spanning over multiple rounds: each item maintains a counter that is updated at each
round. We can also implementparallel tail recursionby defining the labels of nodes to
include the recursive call stack identifiers.

3 Simulation Results

BSP simulation.The reader may observe that the generic MapReduce model of the pre-
vious section is very similar to the BSP model of Valiant [17], leading to the following
conclusion.

Theorem 2. Given a BSP algorithmA that runs inR super-steps with a total memory
sizeN usingP ≤ N processors, we can simulateA usingR rounds andC = O(RN)
communication in the I/O-memory-bound MapReduce framework with reducer memory
size bounded byM = ⌈N/P ⌉.

CRCW PRAM simulation.In this section we present a simulation off -CRCW PRAM
model, the strongest variant of the PRAM model, where concurrent writes to the same
memory location are resolved by applying a commutative semigroup operatorf on all
values being written to the same memory address, such asSum, Min, Max, etc.

The input to the simulation of a PRAM algorithmA is specified by an indexed set of
P processor items,p1, . . . , pP , and an indexed set of initialized PRAM memory cells,
m1, . . . , mN , whereN is the total memory size used byA. For ease of exposition we
assume that thatP = NO(1), i.e. logM P = O(logM N) = O(λ).

The main challenge in simulating the algorithmA in the MapReduce model is that
there may be as many asP reads and writes to the same memory cell in any given step
andP can be significantly larger thanM , the memory size of reducers. Thus, we need
to have a way to “fan in” these reads and writes. We accomplishthis by usinginvisible
funnel trees, where we imagine that there is a different implicitO(M)-ary tree rooted at
each memory cell that has the set of processors as its leaves.Intuitively, our simulation
algorithm involves routing reads and writes up and down theseN trees. We view them
as “invisible”, because we do not actually maintain them explicitly, since that would
requireΘ(PN) additional memory cells.

Each invisible funnel tree is an undirected7 rooted treeT with branching factor
d = M/2 and heightL = ⌈logd P ⌉ = O(λ). The root of the tree is defined to be

7 Each undirected edge is represented by two directed edges.



at level0 and leaves at levelL − 1. We label the nodes inT such that thek-th node
(counting from the left) on levell is defined asv = (l, k). Then, we can identify the
parent of a non-root nodev = (l, k) asp(v) = (l − 1, ⌊k/d⌋) and theq-th child ofv as
wq = (l + 1, k · d + q). Thus, given a nodev = (j, (l, k)), i.e., thek-th node on level
l of thej-th tree, we can uniquely identify the label of its parentp(v) and each of itsd
children and without maintaining the edges explicitly.

At the initialization step, we sendmj to the root node of thej-th tree, i.e.,mj is
sent to node(j, root) = (j, (0, 0)). For each processorpi (1 ≤ i ≤ P ), we sendπi –
the state of processorpi to nodeui. Again, throughout the algorithm, each node keeps
the items that it has received in previous rounds until they are explicitly deleted.

Each step of the PRAM algorithmA is specified as a read sub-step, followed by a
constant-time internal computation, followed by a write sub-step performed by each of
P processors. We show how to simulate each of these sub-steps.

1a. Bottom-up read phase.For each processorpi that attempts to read memory loca-
tion mj , nodeui sends an item encoding a read request (in the following we simply
say a read request) to thei-th leaf node of thej-th tree, i.e. to node(j, L − 1, i),
indicating that it would like to read the contents of thej-th memory cell.
For l = L − 1 downto1 do:

– For each nodev at levell, if it received read request(s) in the previous round,
then it sends a read request to its parentp(v).

1b. Top-down read phase.The root node in thej-th tree sends the valuemj to child
(j, wk) if child wk has sent a read request at the end of the bottom-up read phase.
For l = 1 to L − 2 do:

– For each nodev at level l, if it receivedmj from its parent in the previous
round, then it sendsmj to all those children who have sentv read requests
during the bottom-up read phase. After thatv deletes all of its items.

Each leafv sendsmj to the nodeui (1 ≤ i ≤ P ) if ui has sentv a read request at
the beginning of the bottom-up read phase. After thatv deletes all of its items.

2. Internal computation phase. At the end of the top-down phase, each nodeui

receives its requested memory itemmj , performs the internal computation, updates
the stateπi, and sends an itemz encoding a write request to the node(j, L − 1, i)
if processorpi wants to writez to the memory cellmj .

3. Bottom-up write phase.For l = L − 1 downto0 do:
– For each nodev at levell, if it received write request(s) in the previous round,

let z1, . . . , zk (k ≤ d) be the items encoding those write requests. Ifv is not
a root, it applies the semigroup function on inputz1, . . . , zk, sends the result
z′ to its parent, and then deletes all of its items. Otherwise, if v is a root, it
modifies its current memory item toz′.

When we have completed the bottom-up write phase, we are inductively ready for
simulating the next step in the PRAM algorithm. We have the following.

Theorem 3. Given a CRCW PRAM algorithmA with write conflicts resolved accord-
ing to a commutative semigroup operator such thatA runs inT steps usingP proces-
sors andN memory cells, we can simulateA in the I/O-memory-bound MapReduce
framework in the optimalR = Θ(λT ) rounds and withC = O(λT (N + P )) commu-
nication complexity.



Applications.Theorem 2 immediately impliesO(λ) round andO(λN) communication
complexity MapReduce solutions for problems of sorting andcomputing convex hull
via simulation of the corresponding BSP solutions [11, 10].In Appendix B we present
an alternative randomized algorithm for sorting with the same complexity but which
might be simpler to implement in practice than the simulation of the complicated BSP
algorithm in [11].

By Theorem 3, we can simulate any CRCW (thus, also CREW) PRAM algorithm.
For example, simulation of the PRAM algorithm of Alon and Megiddo [2] for linear
programming in fixed dimensions produces a MapReduce algorithm withO(λ) round
andO(λN) communication complexities.

4 Prefix Sums and Random Indexing

The best known PRAM algorithm for prefix sums runs inO(log∗ N) time on Sum-
CRCW model [8], resulting in aO(λ log∗ N) MapReduce algorithm (by Theorem 3).
In this section, we show how we can improve this result toO(λ) rounds. We use the
all-prefix-sum solution to design a random indexing of the input, which will be used in
the multi-search algorithm in Section 5.

The all-prefix-sum problem is usually defined on an array of integers. Since there is
no notion of arrays in the MapReduce framework, but rather a collection of items, we
define the all-prefix-sum problem as follows: given a collection of itemsxi, wherexi

holds an integerai and an index value0 ≤ i ≤ N − 1, compute for each itemxi a new
valuebi =

∑i
j=0 aj .

The classic PRAM algorithm for computing prefix sums [12] canbe viewed as a
computation along a virtual binary tree on top of the inputs.To compute the prefix sums
in MapReduce we replace the binary tree with the invisible funnel tree and perform
similar 2-pass computation with the details as follows.

In the initialization step, each input node simply sends itsinput itemai with index
i to the leaf nodev = (L − 1, i) of the funnel tree. The rest of the algorithm proceeds
in two phases, processing the nodes inT one level at a time. The nodes at other levels
simply keep the items they have received during previous rounds.

1. Bottom-up phase.For l = L − 1 downto1 do: For each nodev on levell do: If v
is a leaf node, it received a single valueai from an input node. The functionf atv
creates a copysv = ai, keepsai it had received and sendssv to the parentp(v) of
v. If v is a non-leaf node, letw0, w1, . . . , wd−1 denotev’s child nodes in the left-to-
right order. Nodev received a set ofd itemsAv(r) = {sw0

, sw1
, . . . , swd−1

} from
its children at the end of the previous round.f(Av(r)) computes the sumsv =
∑d−1

j=0 swj
, sendssv to p(v) and keeps all the items received from the children.

2. Top-down phase.For l = 0 to L − 1 do: For each nodev on levell do: If v is the
root, it had received itemsAv(r) = {sw0

, sw1
, . . . , swd−1

} at the end of the bottom-

up phase. It creates for each childwi (0 ≤ i ≤ d − 1) a new items′i =
∑i−1

j=0 swj

and sends it towi. If v is a non-root node, letsp(v) be the item received from its
parent in the previous round. Inductively, the valuesp(v) is the sum of all items
“to the left” of v. If v is a leaf having a unique itemak, then it simply outputs



ak + sp(v) as a final value, which is the prefix sum
∑k

j=0 aj . Otherwise, it creates

for each childwi (0 ≤ i ≤ d− 1) a new itemsp(v) +
∑i−1

j=0 swj
and sends it towi.

In all cases, all items ofv are deleted.

Lemma 1. Given an indexed collection ofN numbers, we can compute all prefix sums
in the I/O-memory-bound MapReduce framework inO(λ) round andO(λN) commu-
nication complexities.

Quite often, the input to the MapReduce computation is a collection of items with
no particular ordering or indexing. If each input element isannotated with an estimate
N ≤ N̂ ≤ N c of the size of the input, for some constantsc ≥ 1, then we can modify
the all-prefix-sum algorithm to generate a random indexing for the input with high
probability as follows.

We define the invisible funnel treeT on N̂3 leaves, thus, the height of the tree is
L = ⌈3 logd N̂⌉ = O(λ). In the initialization step, each input node picks a random
indexi in the range[0, N̂3 − 1] and sendsai = 1 to the leaf nodev = (L − 1, i) of T .
Let nv be the number of items that leafv receives. Note it is possible thatnv > 1, thus,
we perform the all-prefix-sums computation with the following differences at the leaf
nodes. During the bottom-up phase, we definesv = nv at the leaf nodev. At the end of
the top-down phase, each leafv assigns each of the item that it received from the input
nodes the indicessp(v) + 1, sp(v) + 2, . . . , sp(v) + nv in a random order, which is the
final output of the computation.

Lemma 2. A random indexing of the input can be performed on a collection of data in
the I/O-memory-bound MapReduce framework inO(λ) round andO(λN) communi-
cation complexities with high probability.

5 Multi-searching and Sorting

Let T be a balanced binary search tree andQ be a set of queries. LetN = |T | + |Q|.
The problem of multi-search asks to annotate each queryq ∈ Q with a leafv ∈ T , such
that the root-to-leaf search path forq in T terminates atv.

Goodrich [10] provides a solution to the multi-search problem in the BSP model.
His solution first converts the binary search tree into a B-tree with the branching param-
eterM = ⌈N/P ⌉, i.e. each node of the B-tree containsΘ(M) routing entries and is of
depthΘ(λ) = Θ(logM N). Then it replicates each node to relieve congestion during
query routing by estimating the query load of each node by routing a small sample of
the queries down the B-tree. The replicated nodes are connected to others in such a way
that the set of nodes reachable from each replicated root node, comprise the skeleton of
the original B-tree. Finally, all the queries are distributed randomly across all the copies
of the root nodes and propagated down this search structureG to the leaf nodes (and
their copies).

The depth ofG is Θ(λ) with each level consisting ofO(|Q|/M) B-tree nodes each
containingΘ(M) routing elements. Thus, the size ofG is O(|T | + λ|Q|). And by
Theorem 2, we obtain a MapReduce solution to multi-search with O(λ) round and
O(λ|T | + λ2|Q|) = O(λ2N) communication complexities.



In this section we present a solution that improves the communication complexity
to optimalO(λN), while still achievingO(λ) round complexity with high probability.
Note, that if|Q| ≤ N/λ, then the size of the BSP search structure is only linear with
N and we can perform the simulation of the algorithm withO(λN) communication
complexity. Thus, for the remainder of this section we assume that|Q| > N/λ.

Multi-searching.To solve the multi-search problem in MapReduce with optimalO(λN)
communication complexity, consider a random partition ofQ intoλ subsetsQ1, Q2, . . . , Qλ

each containingO(N/λ) queries. By the above discussion, we clearly can construct a
search structureG based on the query setQ1, consisting ofΘ(λ) levels each containing
O(N/λ) routing elements, i.e.|G| = O(N). We can also implement a MapReduce al-
gorithmA which propagates any query setQ′ of size|Q′| = O(N/λ) down this search
structureG.

To answer the multi-search queries for all queriesQ, we proceed inΘ(λ) rounds.
In the firstλ rounds, in roundi, 1 ≤ i ≤ λ, we feed new subsetQi of queries to the
O(N/λ) root nodes ofG and propagate the queries down to the leaves using algorithm
A. This approach can be viewed as a pipelined execution ofλ multi-searches onG.

Finally, to implement the random partitioning ofQ into λ subsets, we perform a
random indexing forQ (Lemma 2) and assign query with indexj to subsetQ⌈j/λ⌉. A
nodev containing a queryq ∈ Qi keepsq (by sending it to itself) until roundi, at which
point it sendsq to the appropriate source node ofG.

Theorem 4. Given a binary search treeT of sizeN , we can perform a multi-search
of N queries overT in the I/O-memory-bound MapReduce model inO(λ) rounds with
O(λN) communication with high probability.

Proof (Sketch).Let L1, . . . , Lλ be theλ levels of nodes ofG. First, all query items in
the first query batchQ1 pass (i.e., be routed down)Lj (1 ≤ j ≤ λ) in one round with
high probability. This is because for each nodev in Lj , at mostM query items ofQ1

will be routed tov with probability at least1 − N−c for any constantc. By taking the
union of all the nodes inLj , we have that with probability at least1 −O(N/λ) · N−c,
Q1 passLj in one round. Similarly, we can prove that anyQi (1 ≤ i ≤ λ) can pass
Lj (1 ≤ j ≤ λ) in one round with the same probability since all setsQi have equal
distributions. Since there areλ batches of queries and they are fed intoG in a pipeline
fashion, by union bound we have that with probability at least 1−λ2 ·O(N/λ) ·N−c ≥
1− 1/N (by choosing a sufficient large constantc) the whole process completes within
O(λ) rounds. The communication complexity follows directly because we only send
O(|G| + |Q|) = O(N) items in each round.

Applications and discussion.Using the solution to multi-search problem, in Appendix B
we present a simple sorting algorithm which might be easier to implement in practice
than the simulation of the BSP algorithm from Section 3.

The version of the BSP model used in [10] allows a processor tokeep anunlimited
number of items between rounds while still requiring each processor to send and receive
at most⌈N/P ⌉ = M items. A closer inspection of [10] reveals that the probability that
some processor will contain more thanM items in some round is at mostN−c for



any constantc ≥ 1. Therefore, with high probability it can still be simulatedin our
MapReduce framework. With some additional work, we can reduce this probability of
failure toN−cM with a queuing strategy that we describe in Appendix C. The queuing
algorithm might be of independent interest because it removes some of the requirements
of the framework of Section 2.
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A Omitted Proofs

A.1 Proof of Theorem 1

Proof. We implement roundr = 0 of computation onG in the I/O-memory-bound
MapReduce framework using only the Map and Shuffle steps and every roundr > 0
using the Reduce step of roundr − 1 and a Map and Shuffle step of roundr.

1. Roundr = 0: (a) ComputingBv(r) = f(Av(r)): Initially, only the input nodes
have non-empty setsAv(r), each of which contains only a single item. Thus, the
outputBv(r) only depends on a single item, fulfilling the requirement of Map. We
define Map to be the same asf , i.e., it outputs a set of key-value tuples(w, x), each
of which corresponds to an item(w, x) in Bv(r). (b) Sending items to destinations:
The Shuffle step on the output of the Map step ensures that all tuples with keyw
will be sent to the same reducer, which corresponds to the nodew in G.

2. Roundr > 0: First, each reducerv that receives a tuple(v; x1, x2, . . . , xk) (as a
result of the Shuffle step of the previous round) simulates the computation at node
v in G. That is, it simulates the functionf and outputs a set of tuples(w, x), each of
which corresponds to an item inBv(r). We then define Map to be the identity map:
On input(w, x), output key-value pair(w, x). Finally, the Shuffle step of roundr
completes the simulation of the roundr of computation on graphG by sending all
tuples with keyw to the same reducer that will simulate nodew in G in roundr+1.

Keeping an item is equivalent to sending it to itself, thus, each node inG sends and
receives at mostM items. Therefore, no reducer receives or generates more than M
items implying that the above is a correct I/O-memory-boundMapReduce algorithm.

A.2 Proof of Theorem 2: Simulation of BSP Algorithms

Proof. In the BSP model [17], the input of sizeN is distributed amongP processors
so that each processor contains at mostM = ⌈N/P ⌉ input items. A computation is
specified as a series of super-steps, each of which involves each processor performing
an internal computation and then sending a set of up toM messages to other processors.

The initial state of the BSP algorithm is an indexed set of processors{p1, p2, . . . , pP }
and an indexed set of initialized memory cells{m1,1, m1,2, . . . , mp,m}, such thatmi,j

is thej-th memory cell assigned to processori. Since our framework is almost equiva-
lent to the BSP model, the simulation is straightforward:

– Each processorpi (1 ≤ i ≤ P ) defines a nodevi in our generic MapReduce graph
G, and the internal stateπi of pi and its memory cells{mi,1, . . . , mi,m} define
the itemsAvi

of nodevi. In the BSP algorithm, in each super-step each processor
pi performs a series of computation, updates its internal state and memory cells to
π′

i and{m′
i,1, . . . , m

′
i,m}, and sends a set of messagesµj1 , . . . , µjk

to processors
pj1 , . . . , pjk

, where the total size of all messages sent or received by a processor
is at mostM . In our MapReduce simulation, functionf at nodevi performs the
same computation, modifies items{πi, mi,1, . . . , mi,m} to {π′

i, m
′
i,1, . . . , m

′
i,m}

and sends itemsµj1 , . . . , µjk
to nodesvj1 , . . . , vjk

.



A.3 Proof for Theorem 3: Simulation of CRCW PRAM Algorithms

Proof. Each parallel step of the CRCW PRAM algorithm is simulated byO(λ) rounds
in the I/O-memory-bound MapReduce algorithm, and the totalnumber of items sent in
each round isO(N + P ).

Now we show that the round complexity of our simulation result is tight. Consider
the problem of summing upN integers. In the Sum-CRCW PRAM model this problem
can be solved in a single parallel step withP = N processors. However, we show that
it takes at leastΩ(logM N) = Ω(λ) rounds to solve this problem in the MapReduce
model.

Notice that in order for some nodev in our generic MapReduce model to compute
the correct answer, it must collect information from each ofthe N input nodes. The
proof is by induction on the size of the input. Assume that forany n < N it takes
at leastlogM n rounds to compute the sum ofn elements in the MapReduce model
(the inductive hypothesis). Clearly, forn ≤ M this is true because each input node
holds only a single item and needs to send it tov. In the last round,v can collect
information only from at mostM nodes due to our constraint on the buffer size. By
the pigeonhole principle, at least one of theseM nodes has already computed the result
based on the information from at leastn = N/M input nodes. Letu be this node. By
our inductive hypothesis it takes at leastlogM n = logM N −1 rounds foru to perform
this computation. The lower bound follows.

A.4 Proof for Lemma 1

Proof. The fact that the algorithm correctly computes all prefix sums is by induction
on the valuessp(v). In each round, each node sends and receives at mostM items,
fulfilling the condition of Theorem 1. The total number of rounds is2L = O(λ) plus
the initial round of sending input elements to the leaves ofT . The total number of items
sent in each round is dominated by items sent byN leaves, which isO(N) per round.
Applying Theorem 1 completes the proof.

A.5 Proof for Lemma 2

Proof. First, note that the probability thatnv > M at some leaf vertex is at most
N−Ω(M). Thus, with probability at least1 − N−Ω(M), no leaf and, consequently, no
node ofT receives more thanO(M) elements. Second, note that at mostN leaves of the
funnel treeT haveAv(r) 6= ∅. Since we do not maintain the edges of the tree explicitly,
the total number of items sent in each round is again dominated by the items sent by
at mostN leaves, which isO(N) per round. Finally, the round and communication
complexity follows from Lemma 1.

B Sorting

In this section, we show how to obtain a simple sorting algorithm in the MapReduce
model by using our multi-search algorithm from Section 5.



Again, since there is no notion of arrays in MapReduce, but rather collections of
items, we define the problem ofsortingas follows: given an indexed collection of com-
parable itemsX , compute for each itemxi ∈ X the number of other items inX that
are smaller thanxi. For two itemsxi andxj with equal value, we break the tie by the
value of their indicesi andj, i.e. we can assume that all values are distinct.

First consider the following simple brute-force sorting result:

Lemma 3. Given a setX of N indexed comparable items, we can sort them inO(λ)
rounds andO(λN2) communication complexity in the MapReduce model.

Proof. Consider the following CRCW PRAM algorithm withP = N2 processors.

1. Each processorpi,j (i 6= j) reads itemxi andxj , compares them and stores in the
matrix entryA[i, j] the value0 if xi < xj and value1 otherwise.

2. For each rowi of matrix A, in parallel, the processorspi,1, . . . , pi,N compute the
sumki =

∑N
j=1 A[i, j], which equals the number of itemsxj that are smaller than

xi

We can implement the above algorithm in MapReduce inO(λ) rounds andO(λN2)
communication complexity as follows: The first step is implemented by Theorem 3 (or
using the idea ofinvisible funnel treesdirectly in MapReduce) and the second step by
Lemma 1.

Now we are ready to describe a simple randomized sorting algorithm with optimal
O(λ) round andO(λN) communication complexities.

1. PickΘ(
√

N) random pivots. Sort the pivots using brute-force sorting algorithm.
This results in the pivots being assigned a unique index/label in the range[1,

√
N ].

2. Build a search tree on the set of sorted pivots as the leavesof the tree.
3. Perform a multi-search on the input items over the search tree. The result is the

label associated with each item which is equal to the “bucket” within which the
input is partitioned into.

4. In parallel, apply steps 1 through 3 to each bucket to obtain the total ofΘ(N3/4)
buckets.

5. Apply brute force sorting algorithm to each bucket in parallel.

Theorem 5. A set ofN items can be sorted in the MapReduce model inO(λ) round
andO(λN) communication complexities.

Proof. The first four steps of the algorithm can be performed using Lemmas 2 and 3
and Theorem 4 inO(λ) rounds andO(λN) communication complexity.

With high probability, the first application of the first three steps of the algorithm
creates buckets of size at mostÕ(

√
N). The second application creates buckets of size

at mostÕ(N1/4) = O(
√

N). Thus, the last step of the algorithm runs inO(λ) rounds
andO(λN) communication complexity.



C FIFO Queues in MapReduce Model

As mentioned in Section 5, with probability1 − N−c for any constantc ≥ 1 no pro-
cessor in the BSP algorithm for multi-searching contains more thanM items. Thus, the
algorithm for multi-search in Section 5 can be implemented in the I/O-memory-bound
MapReduce framework with high probability.

However, the failure of the algorithm implies a crash of a reducer in the MapReduce
framework, which is quite undesirable. In this section we present a queuing strategy
which ensures that no reducer receives more thanM items, which might be of indepen-
dent interest.

Consider the following modified version of the generic MapReduce framework from
Section 2. In this version we still require each nodev ∈ V to send at mostM items.
However, instead of limiting the number of items that a node keeps or receives to be
M , we only require that in every round at mostM different nodes send to any given
nodev, and functionf takes as input a list of at mostM items. To accommodate the
latter requirement, if a node receives or contains more thanM items, the excess items
are kept within the node’s input buffer and are fed into function f in batches ofO(M)
items per round in a first-in-first-out (FIFO) order.

In this section we show that any algorithmA with round complexityR and com-
munication complexityC in the modified framework can be implemented using the
framework in Section 2 with the same asymptotic round and communication complex-
ities.

We simulate algorithmA by implementing the FIFO queue at each nodev by a
doubly-linked listLv of nodes, such thatLv ∩ Lw = ∅ for all v 6= w andLv ∩ V = ∅
for all v ∈ V . Each nodev ∈ V keeps a pointerheadLv

to the head of its listLv.
In addition,v also keepsnhead, the number of query items atheadLv

. If Lv is empty,
headLv

points atv andnhead = 0. Throughout the algorithm we maintain an invariant
that for each doubly-linked listLv, each node inLv contains[M/4, M/2] query items
except the head node, i.e., the one containing the last itemsto be processed in the queue,
which contains at mostM/2 query items. We simulate one round ofA by the following
three rounds. LetIN (v) andOUT (v) denote the set of in- and out-neighbors of node
v ∈ V , respectively. That is, for eachu ∈ IN (v), (u, v) ∈ E and for eachw ∈
OUT (v), (v, w) ∈ E.

R1. Each nodeu ∈ V that wants to sendnu,v query items tov ∈ OUT (u), instead of
sending the actual query items, sendsnu,v to v.

R2. Each nodev ∈ V receives a set of different valuesnu1,v, nu2,v, . . . , nuk,v from its
in-neighborsu1, u2, . . . , uk (k ≤ M). For convenience we definenu0,v , nhead.
Next, v partitions the set{0, 1, . . . , k} into setsS1, . . . , Sm, m ≤ k, such that
M/4 ≤ ∑

j∈Si
nuj ,v ≤ M/2 for all 1 ≤ i ≤ m − 1 and

∑

j∈Sm
nuj ,v ≤ M/2.

W.l.o.g., assume that0 ∈ S1. For eachSi, we will have a corresponding nodewi

in the list Lv: We letw1 = headLv
and for eachSi, 2 < i ≤ m we pick a new

nodewi, create edges(wi, wi−1) and(wi−1, wi), and send it to nodeswi andwi−1,
respectively. For eachj ∈ Si, we also notifyuj that it should send all its queries
to wi by sending the label ofwi to uj. The only exception to this rule is that if
w1 6= v andw1 contains the edge(w1, v), i.e. it is the first node inLv. In this case,



for eachj ∈ S1 eachuj should send queries directly tov. Finally, we update the
pointerheadLv

to point towm and updatenhead =
∑

j∈Sm
nuj ,v, unlesswm = v,

in which casenhead = 0.
R3. Each nodeuj ∈ IN (v) receives the label of a nodewi from v in the previous

rounds. It sends all its query items towi. Note that ifwi = v, all items will be sent
to v directly. At the same time, each nodew 6∈ V , i.e. w ∈ Lv, that has an edge
(w, v) for somev ∈ V sends all its items tov and extracts itself from the list. The
nodew accomplishes this by deleting all edges incident tow and by sending to its
predecessor pred(w) in the queueLv a new edge(pred(w), v), thus, linking the rest
of the queue tov.

Theorem 6. Let A be an algorithm in the modified MapReduce framework, where in
every round each node is required to send at mostM items, but is allowed to keep and
receive an unlimited number of items as long as they arrive from at mostM different
nodes, with excess items stored in FIFO input buffer and fed into functionf in blocks of
size at mostM . If A runs inR round complexity andC communication complexity in
the modified framework, then we can implementA in the original I/O-memory-bound
MapReduce framework inO(R) rounds andO(C) communication complexity.

Proof. First, it is easy to see that our simulation ensures that eachnode keeps as well as
sends and receives at mostM items. Next, note that in every three rounds (round3t, 3t+
1, 3t + 2), each nodev ∈ V routesmin{Θ(M), kt

v} items, wherekt
v is the combined

number of items in the queueLv and the number of items thatv’s in-neighbors send to
v during the three rounds. This is within a constant factor of the number of items that
v routes in roundt in algorithmA. Finally, the only additional items we send in each
round are the edges of the queues{Lv | v ∈ V }. Note that we only need to maintain
O(1) additional edges for each node of eachLv. And since these nodes are non-empty,
the additional edges do not contribute more than a constant factor to the communication
complexity.

Applications.The DAGG of the multi-search BSP algorithm [10] satisfies the require-
ment that at mostM nodes attempt to send items to any other node. In addition, ifsome
processor of the BSP algorithm happens to keep more thanM items, the processing
of these items is delayed and can be processed in any order, including FIFO. Thus, the
requirements of Theorem 6 are satisfied.

We do not know how to modify our random indexing algorithm in Section 4 to fit
the modified framework. Thus, we cannot provide a Las Vegas algorithm. However,
the above framework reduces the probability of failure fromN−Ω(1) to the probability
of failure of the random indexing step, i.e.,N−Ω(M), which is much smaller for large
values ofM .

The modified framework might be of independent interest because it allows for an
alternative way of designing algorithms for MapReduce. In particular, it removes the
burden of keeping track of the number of items kept or sent by anode.


