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ABSTRACT
Graphics Processing Units (GPUs) have emerged as popular archi-

tectures for high-performance computing due to their parallelism

and low latency context switching capabilities. However, optimiz-

ing GPU implementations can be challenging due to the complexity

of the architecture, such as the diverse characteristics of memory

units. While most optimization efforts focus on parallelism and

global memory access, for some algorithms memory conflicts in

shared memory, known as bank conflicts, can significantly impact

performance. This affects the accuracy of theoretical runtime anal-

ysis of GPU algorithms.

In this paper, we present a number-theoretic solution for elimi-

nating all bank conflicts for Thrust library’s mergesort implemen-

tation – the fastest comparison-based sorting implementation on

GPUs. Our experiments demonstrate that the modified mergesort

takes virtually the same time to run on the worst-case inputs as it

does on random inputs (the worst-case inputs have been shown in

the past to cause up to 50% slowdown).

CCS CONCEPTS
• Theory of computation→ Sharedmemory algorithms; Sort-
ing and searching.
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1 INTRODUCTION
Over the past decade, Graphics Processing Units (GPUs) have be-

come a popular architecture for high performance computing. GPUs

are highly parallel architectures, featuring thousands of physical

cores and low latency context switching capabilities, thereby allow-

ing the utilization of hundreds of thousands of threads. However,
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due to the hierarchical design of its memory system, with each level

of the memory hierarchy having its own latency, bandwidth, and

optimal access requirements, achieving fast GPU implementations

can be a challenging task.
1

As a consequence, most implementations on GPUs focus on opti-

mizing a few (typically one or two) performance criteria, such as par-

allelism [7, 16, 24, 39], global memory accesses [5, 7, 10, 29, 32, 39],

shared memory accesses [1, 8, 11, 18, 21, 23, 28, 30, 44], register uti-

lization [5, 6, 19, 29, 41], or synchronization [20, 42, 43]. Typically,

high-performance GPU implementations are optimized to expose a

high degree of parallelism and to reduce the number of accesses to

global memory – the largest memory unit with the highest latency.

Both of these aspects can be modeled using well-known computa-

tional models that provide a wealth of algorithms and techniques

that can be adopted to GPUs. For example, the techniques developed

in the classical Parallel Random Access Machine (PRAM) model [26]

carry over well for maximizing parallelism needed for the large

number of GPU threads. On the other hand, since optimal accesses

to global memory are essentially performed in blocks of contiguous

data, known as coalesced accesses, such accesses to global mem-

ory can be modeled and analyzed using the External Memory (EM)

model [2] (or its parallel variant – the PEM model [4]), where the

global memory is modeled as the external memory, and the faster,

but smaller shared memory acts as the internal memory.

The EM and PEMmodels treat internal memory as a uniform ran-

dom access memory and many GPU implementations treat shared

memory as such. However, that is not actually the case in practice

and to take a full advantage of the GPU performance potential, it

is often useful to consider the special features of shared memory

when designing algorithms.

Design of shared memory. First of all, shared memory is shared

among all threads of a thread block – a program-defined, but glob-

ally fixed, subset of threads. Threads within each thread block are

scheduled by the hardware in groups of 𝑤 threads, called warps,

and similar to the PRAM, the threads within a warp execute syn-

chronously.
2
On current NVIDIA GPUs,𝑤 = 32.

1
We provide a brief overview of relevant GPU terminology and concepts. For more

details, we refer interested readers to [35, 36].

2
Starting with NVIDIA GPUs with Compute Capability 7.0, the threads within a warp

no longer execute synchronously. However, if there are no delays due to bank conflicts,

the threads have no reason to diverge, and will continue to execute in lock-step. Hence,

synchronous execution is a reasonable assumptions when designing bank conflict free

algorithms even for the newer hardware.

https://orcid.org/0000-0001-8918-7067
https://orcid.org/0000-0001-8876-4846
https://doi.org/10.1145/3694906.3743337
https://doi.org/10.1145/3694906.3743337


SPAA ’25, July 28-August 1, 2025, Portland, OR, USA Berney and Sitchinava

Shared memory is organized into𝑤 memory modules, known

as memory banks,
3
and accessing the same memory bank simulta-

neously by multiple threads in the same warp incurs a delay.
4
This

congestion on memory banks is known as bank conflicts in the GPU

terminology. More specifically, in shared memory that consists of𝑤

banks, the 𝑖-th memory bank is formed by addresses 𝑗 ≡ 𝑖 (mod 𝑤),
i.e., items in contiguous array are stored strided across the memory

banks. Hence, when coarsening parallelism, the natural approach of

having each thread process contiguous subarray in shared memory

(which indeed is often used in practice) may lead to bank conflicts.

It has been shown that in GPU implementations, which heavily

utilize shared memory, bank conflicts can significantly increase the

overall runtime in the worst case [8, 23, 29, 44].

Formal analysis of the delay due to bank conflicts in an algorithm

is a challenging task, especially if accesses to shared memory are

data-dependent. For this reason, most GPU implementations forego

bank conflict analysis and instead evaluate GPU implementations

empirically, utilizing various profiling tools to measure bank con-

flicts at runtime and applying ad-hoc heuristics in an attempt to

reduce the number of bank conflicts experimentally.

In this paper, we show that we can eliminate all bank conflicts in

the Thrust library’s implementation of themergesort algorithm [38].

Our surprisingly simple approach results in runtimes that are vir-

tually the same as the runtime of the highly optimized Thrust

mergesort on random inputs, but ours holds in the worst-case.

Thrust’s mergesort implementation. Thrust library implements

the classical mergesort by parallelizing the merging of two sorted

arrays A and B, each of size 𝑛/2, as follows. To implement the

merge using 𝑡 threads, it identifies 𝑡 pairs of contiguous subarrays

𝐴𝑖 and 𝐵𝑖 , |𝐴𝑖 | + |𝐵𝑖 | = 𝑛/𝑡 , such that the sorted sequence of 𝐴𝑖 ∪
𝐵𝑖 forms a contiguous subarray in the sorted output of A ∪ B.

The identification of the 𝑖-th pair of subsequences 𝐴𝑖 and 𝐵𝑖 is an

order statistic that is found by the 𝑖-th thread independently of

other threads via a mutual binary search on A and B in 𝑂 (log𝑛)
time. (This is often given as an exercise in classical textbooks on

algorithms, e.g., [12, Exercise 9.3-10].) This approach is known as

the merge path algorithm, named so by Green et al. [24], who were

the first to implement it on GPUs and, which was since incorporated

in the Thrust library [38].

To reduce the number of global memory accesses, the identifi-

cation of pairs 𝐴𝑖 and 𝐵𝑖 is performed hierarchically in 2 stages:

first in global memory, where subsequences for each thread block

are identified and loaded into (contiguous) shared memory space;

then in shared memory, where each thread identifies 𝐴𝑖 and 𝐵𝑖 .

However, because the subarrays 𝐴𝑖 and 𝐵𝑖 are kept contiguous

in shared memory and, therefore, occupy various memory banks,

the naive (sequential) processing of 𝐴𝑖 and 𝐵𝑖 by the 𝑖-th thread

directly in shared memory may lead to bank conflicts. Eliminating

bank conflicts is extra challenging if the access pattern to the items

3
While, technically, the number of shared memory banks could be different from the

number of threads in a warp, it is natural that these numbers are the same and is

actually the case on all modern NVIDIA GPUs, so we parameterize them by the same

variable 𝑤.

4
More precisely, multiple threads of the samewarp accessing distinct memory locations

in the same memory bank simultaneously incur a delay, i.e., access to the same element

by multiple threads does not incur a delay. However, this feature is irrelevant for the

problems we consider here because all threads access distinct elements.

of 𝐴𝑖 and 𝐵𝑖 at each step is data dependent. In fact, analytically

determining the number of bank conflicts even for the classical

problem of merging sorted sequences of 𝐴𝑖 and 𝐵𝑖 on a random

input is an open problem. Therefore, the current state-of-the-art

implementation of mergesort on GPUs [24, 38] instead uses the

following heuristic, which was determined to perform better in

practice: choose the number of threads 𝑡 such that |𝐴𝑖 | + |𝐵𝑖 | = 𝑛/𝑡
is coprime with𝑤 . Karsin et al. [29] empirically measured that on

randomly chosen inputs, the average number of bank conflicts per

step is a small constant (between 2 and 3). In contrast, Berney and

Sitchinava [8] proved the existence of inputs that cause 𝑛/𝑡−𝑜 (𝑛/𝑡)
bank conflicts per step, when 𝑛/𝑡 and𝑤 are coprime. Note that 𝑛/𝑡
is the trivial upper bound on the number of bank conflicts. They

also showed that these inputs caused a peak slowdown of ≈ 50% in

practice, compared to the runtime on random inputs.

Our contributions. In this work, we show that each pair of subar-

rays 𝐴𝑖 and 𝐵𝑖 can be loaded from shared memory into a register

file of the 𝑖-th thread without incurring any bank conflicts. We refer

to this procedure as the load-balanced dual subsequence gather.
5

Once the subarrays 𝐴𝑖 and 𝐵𝑖 are in the registers of a thread, they

can be merged by the thread sequentially without any additional

access to shared memory, i.e., without any bank conflicts. Having

no bank conflicts not only improves practical performance, but

also significantly simplifies theoretical analysis of the mergesort on

GPUs, because without the delay due to bank conflicts, the runtime

analysis becomes equivalent to the analysis in the PRAM model.

We experimentally evaluate our approach by incorporating our

load-balanced dual subsequence gather procedure into Thrust’s

highly tuned mergesort implementation. Our experiments demon-

strate that the runtime using our bank conflict free load-balanced

dual subsequence gather is essentially the same as of the original

Thrust Mergesort on random inputs. Since it had been shown in

the past that random inputs cause 2-3 bank conflicts on average per

element, in practice, the overhead of our approach is equivalent to

2-3 extra accesses to shared memory. However, this holds for all

inputs, including in the worst case.

Finally, we use our observations to generalize the worst case

input for Thrust mergesort by Berney and Sitchinava [8] to values

of 𝑛/𝑡 that are not coprime with𝑤 . In practice, Thrust mergesort

performs significantly worse when𝑛/𝑡 is not coprime with𝑤 . More-

over, since𝑤 = 32 on all modern GPUs, it is easy to find parameter

𝑡 , which makes 𝑛/𝑡 be coprime with 𝑤 . However, generalizing

worst-case input construction to arbitrary parameter values is of

theoretical interest, and was left as an open problem by the prior

work [8]. Here we close this question by providing a method to

produce worst case input for arbitrary 𝑡 .

2 PRELIMINARIES
Memory organization into memory modules is not unique to GPUs,

emerging as early as the 1980s [22]. Such memory design has been

modeled using the Distributed Memory Machine (DMM) [31] and

the analysis of the delay, due to congestion on memory modules,

of an arbitrary PRAM algorithm is known as the granularity of

parallel memories problem [13–15, 17, 27, 31, 33, 40]. The DMM

5
The inverse procedure can be used to write elements from registers into shared

memory in a bank conflict free manner, i.e., a load-balanced dual subsequence scatter.



Eliminating Bank Conflicts SPAA ’25, July 28-August 1, 2025, Portland, OR, USA

0:

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

0:

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

Figure 1: Visualization of strided accesses in shared memory
with𝑤 = 12 (number of sharedmemory banks and number of
threads in a warp). The left figure depicts bank conflict free
accesses: the 𝑤 threads of a warp access green entries con-
currently. In comparison, the right figure depicts the worst
case number of bank conflicts resulting from the𝑤 threads
of a warp accessing the red entries concurrently. Cells are
labeled with their shared memory index/address.

can be used to model shared memory accesses on a GPU, because

of the natural mapping of shared memory banks to memory mod-

ules of the DMM and threads of a warp to DMM processors. For a

DMM consisting of 𝑤 memory modules and 𝑤 synchronous pro-

cessors, Czumaj et al. [14] present an access schedule that results

in a 𝑂 (log log log𝑤 log
∗𝑤) factor delay, with high probability. In

contrast, a naive PRAM implementation can incur a 𝑂 (𝑤) factor
slowdown in the worst case.

Unfortunately in practice, the overheads associated with the

techniques used in these general approaches, such as universal

hashing, randomization, and data replication, make it impractical

for high performance implementations. Alternatively, one can de-

sign bank conflict free algorithms – dedicated algorithms for specific

problems that guarantee no bank conflicts – directly in the DMM

model [1, 11, 18, 21, 28, 30, 34, 44]. Without any bank conflicts, the

runtime analysis becomes much simpler, as it becomes equivalent to

PRAM analysis. Compared to standard PRAM approaches, however,

bank conflict free algorithms usually come at a cost of increased

overhead, e.g., auxiliary memory usage [1, 11, 18, 21], increased

code complexity [21, 44], higher constant factors [1, 11], or more

overall work [28, 30, 44].

The crux of designing bank conflict free algorithms is understand-

ing themapping of accesses performed to each of the𝑤 sharedmem-

ory banks. On NVIDIA GPUs, memory bank 𝑖 ∈ {0, 1, . . . ,𝑤 − 1}
contains every 𝑖-th element; i.e., the 𝑗-th element in shared memory

resides in memory bank 𝑖 ≡ 𝑗 (mod 𝑤). Thus, a 2-dimensional

matrix consisting of 𝑤 rows is a natural visualization, where the

𝑖-th row corresponds to the 𝑖-th memory bank and data is laid

out in the column-major order. It has been observed in previous

work [8, 11, 18, 28] that bank conflicts do not occur when accesses

by threads of a warp are separated by a distance that is coprime

with𝑤 (i.e., does not share a common divisor with𝑤 ). Conversely,

bank conflicts do occur when the access stride instead shares a

common divisor with𝑤 (i.e., not coprime). Figure 1 illustrates this

behavior on shared memory with𝑤 = 12, using accesses strided by

a distance of 5 (coprime) and 6 (not coprime). Leveraging this ob-

servation, researchers have designed bank conflict free algorithms

via padding data, staggering accesses, and/or permuting elements

into an alternate layout. However, in spite of this common design

approach, insight into this behavior has not been fully understood

and formalized, leaving researchers to reprove bank conflict free ac-

cesses for each problem considered. In this work, we apply number

theory—a perfect tool to discover insights into integer mappings—

to clarify and codify this phenomena. Our analysis in Sections 3

and 4 relies on various number theory results, specifically, we uti-

lize results related to congruences, the greatest common divisor of

two integers, and complete residue systems. For a full review of

definitions and relevant number theory results, we refer readers to

Appendix A. Formal proofs of these results can by found in intro-

ductory textbooks on number theory, e.g., [3] with the exception of

Corollary 17 and 18, which we provide for completeness, although

they are typically given as an exercise in undergraduate number

theory courses.

3 LOAD-BALANCED DUAL SUBSEQUENCE
GATHER

The load-balanced dual subsequence gather is a bank conflict free

algorithm for loading subsequences from at most two sequences,

from shared memory into register space. Intuitively, it is a simple

algorithm consisting of a permutation and a scan of𝐴𝑖 in ascending

order and 𝐵𝑖 in descending order (see Algorithm 1). As mentioned

in Section 2, we use number theory to prove that such access results

in no bank conflicts, namely we construct complete residue systems

modulo 𝑤 (see Definition 13 in the Appendix) and use various

results related to the greatest common divisor (gcd) of two integers

in our proofs.

To explain the basic ideas of our algorithm, in Sections 3.1 and

3.2, we consider a single warp with its elements from𝐴 and 𝐵 stored

in contiguous shared memory locations. We start in Section 3.1 by

considering values of 𝑤 and 𝐸 that are coprime and show that

reversing 𝐵 and dynamically staggering the scan results in bank

conflict free accesses. When 𝑤 and 𝐸 are not coprime, additional

bank conflicts arise from strided accesses to shared memory. In

Section 3.2, we show that these bank conflicts can be eliminated

by performing an additional circular shift of the input in shared

memory. Finally, in Section 3.3 we extend our approach to a full

thread block, leading to a practical implementation.

Table 1 describes the main parameters used throughout this

section. We assume that the number of threads per thread block, 𝑢,

is a multiple of𝑤 , so that there are 𝑢/𝑤 complete warps in a thread

block. We refer to the subsequences of A and B for a thread block

as 𝐴 and 𝐵; and the offsets of 𝐴𝑖 and 𝐵𝑖 in 𝐴 and 𝐵, i.e., indices

where the 𝑖-th thread starts) as 𝑎𝑖 and 𝑏𝑖 , respectively.
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Algorithm 1 Reads |𝐴𝑖 | elements from the 𝐴 list and |𝐵𝑖 | = 𝐸 − |𝐴𝑖 | elements from the 𝐵 list from shared memory into registers. Let 𝜋 be a

permutation that reverses the order of elements (described in Section 3.1) and 𝜌 performs a circular shift (described in Section 3.2).

1: Dual-Subseqence-Gather(𝑠ℎ𝑚𝑒𝑚, 𝑖𝑡𝑒𝑚𝑠 , 𝐴, 𝐵, 𝑎𝑖 , 𝑏𝑖 , |𝐴𝑖 |, |𝐵𝑖 |)
2: 𝑠ℎ𝑚𝑒𝑚 = 𝜌 (𝐴 ∪ 𝜋 (𝐵)) ⊲ Permute elements in shared memory

3: 𝑘 = 𝑎𝑖 (mod 𝐸)
4: for 𝑗 = 0 to 𝐸 − 1

5: if 𝑗 − 𝑘 (mod 𝐸) < |𝐴𝑖 |
6: 𝑖𝑑𝑥 = 𝜌 ( 𝑗 − 𝑘 (mod 𝐸) + 𝑎𝑖 ) ⊲ Read ( 𝑗 − 𝑘 (mod 𝐸))-th element of 𝐴𝑖

7: else
8: 𝑖𝑑𝑥 = 𝜌 (𝜋 (𝑘 − 𝑗 − 1 (mod 𝐸) + 𝑏𝑖 )) ⊲ Read (𝑘 − 𝑗 − 1 (mod 𝐸))-th element of 𝐵𝑖

9: 𝑖𝑡𝑒𝑚𝑠 [ 𝑗] = 𝑠ℎ𝑚𝑒𝑚[𝑖𝑑𝑥]

Table 1: Descriptions of the main parameters for the load-
balanced dual subsequence gather.

Parameter Description

𝐴 Subarray of A for a thread block

𝐵 Subarray of B for a thread block

𝐴𝑖 Subarray of 𝐴 for the 𝑖-th thread

𝐵𝑖 Subarray of 𝐵 for the 𝑖-th thread

𝑎𝑖 Offset of 𝐴𝑖 in 𝐴

𝑏𝑖 Offset of 𝐵𝑖 in 𝐵

𝑢 Number of threads per thread block

𝑤 Number of banks in shared memory and

the number of threads per warp

𝐸 Number of elements per thread

𝑑 Greatest common divisor of𝑤 and 𝐸

3.1 Coprime𝑤 and 𝐸

Accessing elements in shared memory with a stride distance that is

coprime, relative to the number of banks, has been commonly used

to reduce the number of bank conflicts. We start by formalizing

this pattern in the context of number theory and show that using a

coprime stride distance results in a complete residue system.

Lemma 1. Let 𝑗 ∈ Z. If 𝑑 = gcd(𝑤, 𝐸) = 1, then

𝑅 𝑗 = { 𝑗 + 𝑘𝐸 : 𝑘 ∈ Z and 0 ≤ 𝑘 < 𝑤} is a complete residue system.

Proof. Since |𝑅 𝑗 | = 𝑤 , it suffices to show that for all 𝑟𝑎, 𝑟𝑏 ∈
𝑅 𝑗 , if 𝑟𝑎 ≠ 𝑟𝑏 then 𝑟𝑎 . 𝑟𝑏 (mod 𝑤). Assume for the sake of

contradiction that 𝑟𝑎 ≡ 𝑟𝑏 (mod 𝑤). It follows from Corollary 16,

that 𝑟𝑎 ≡ 𝑟𝑏 (mod 𝑤) =⇒ 𝑗 + 𝑎𝐸 ≡ 𝑗 + 𝑏𝐸 (mod 𝑤) =⇒
𝑎 ≡ 𝑏 (mod 𝑤) =⇒ 𝑎 = 𝑏, since 0 ≤ 𝑎, 𝑏 < 𝑤 , which is a

contradiction. □

Consider an arbitrary warp with its subsequences of 𝐴 and 𝐵

stored in contiguous shared memory locations (subsequences of

𝐴 stored first and subsequences 𝐵 stored immediately afterwards).

For ease of exposition, we refer to the elements by its local index

in shared memory in this memory layout (e.g., the local index of

the first element is 0). Our approach performs 𝐸 rounds of shared

memory accesses, where in round 𝑗 ∈ {0, 1, . . . , 𝐸 − 1}, 𝑅 𝑗 defines

the set of𝑤 elements that are read into the register space of threads.

It follows from Lemma 1, that for every 𝑗 , all elements of 𝑅 𝑗 are

located in distinct shared memory banks. To ensure bank conflict

free access, it remains to show that every round 𝑗 can be performed

with a single parallel access by the𝑤 threads of the warp, i.e., each

thread of the warp reads exactly one element of 𝑅 𝑗 .

Without loss of generality, consider the elements in 𝐴. Since

the elements in 𝑅 𝑗 are separated by 𝐸 positions and the number of

elements that will be accessed by any single thread in 𝐴 is at most

𝐸 (i.e., |𝐴𝑖 | ≤ 𝐸), the elements in 𝑅 𝑗 that reside in the 𝐴 list will

be read by unique threads. Accounting for both 𝐴 and 𝐵, at most

2 elements will be read by any single thread in each round (see

Figure 7 for an example). To resolve this conflict between 𝐴 and 𝐵,

we reverse the order of the elements in 𝐵. Recall that 𝑎𝑖 + 𝑏𝑖 = 𝑖𝐸

and |𝐴𝑖 | + |𝐵𝑖 | = 𝐸. The order of elements in the 𝐴 list remains

unchanged, hence, elements of 𝐴𝑖 are read in ascending order in

rounds:

𝑎𝑖 (mod 𝐸), 𝑎𝑖 + 1 (mod 𝐸), . . . , 𝑎𝑖 + |𝐴𝑖 | − 1 (mod 𝐸) .

After reversing the order of elements in the 𝐵 list, the elements

of 𝐵𝑖 are now located at indices {(𝑤𝐸 − 1) − 𝑏𝑖 , (𝑤𝐸 − 1) − (𝑏𝑖 +
1), . . . , (𝑤𝐸 − 1) − (𝑏𝑖 + |𝐵𝑖 | − 1)}. Hence, the first element of 𝐵𝑖 is

read in round𝑤𝐸 − 1 − 𝑏𝑖 ≡ 𝑎𝑖 − 1 (mod 𝐸) and the last element

of 𝐵𝑖 is read in round𝑤𝐸 − 1 − (𝑏𝑖 + |𝐵𝑖 | − 1) ≡ 𝑎𝑖 + |𝐴𝑖 | (mod 𝐸).
Overall, 𝐵𝑖 is read in descending order in rounds:

𝑎𝑖 + |𝐴𝑖 | (mod 𝐸), . . . , 𝑎𝑖 − 2, 𝑎𝑖 − 1 (mod 𝐸) .

Therefore, exactly a single element is read in each round by every

thread. Figure 2 illustrates an example of the accesses performed.

3.2 Non-coprime𝑤 and 𝐸

In Section 3.1 (coprime 𝑤 and 𝐸), Lemma 1 shows that for 𝑗 ∈ Z,
𝑅 𝑗 = { 𝑗 + 𝑘𝐸 : 𝑘 ∈ Z and 0 ≤ 𝑘 < 𝑤} is a complete residue

system modulo 𝑤 . However, if 𝑑 = gcd(𝑤, 𝐸) > 1 (𝑤 and 𝐸 are

not coprime), then 𝑤/𝑑 ∈ Z and every (𝑤/𝑑)-th element in 𝑅 𝑗

is congruent to each other modulo 𝑤 . Let 𝑟𝑎, 𝑟𝑎+𝑤
𝑑

∈ 𝑅 𝑗 , 𝑟𝑎 =

𝑗 + 𝑎𝐸 ≡ 𝑗 + 𝑎𝐸 (mod 𝑤) ≡ 𝑗 +
(
𝑎 + 𝑤

𝑑

)
𝐸 = 𝑟𝑎+𝑤

𝑑
. Therefore, if 𝐸

and 𝑤 are not coprime, then 𝑅 𝑗 is not a complete residue system

modulo𝑤 . To solve this issue, we partition 𝑅 𝑗 into𝑑 disjoint subsets,

each consisting of 𝑤/𝑑 elements. For 𝑗 ∈ {0, 1, . . . , 𝐸 − 1} and

ℓ ∈ {0, 1, . . . , 𝑑 − 1}, let

𝑅
(ℓ )
𝑗

=

{
𝑗 +

(
ℓ𝑤

𝑑
+ 𝑘

)
𝐸 : 𝑘 ∈ Z and 0 ≤ 𝑘 <

𝑤

𝑑

}
and 𝐷ℓ =

{
ℓ + 𝑘𝑑 : 𝑘 ∈ Z and 0 ≤ 𝑘 <

𝑤

𝑑

}
.
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Figure 2: An example of shared memory accesses performed by a warp in CF-Merge for𝑤 = 12, 𝐸 = 5, and 𝑑 = 1 (i.e., coprime) on
an arbitrary input. Elements belonging to the 𝐴 list (𝐵 list) are colored yellow (blue). Cell values correspond to the thread IDs
that access that cell. Cells colored green are the cells accessed by the𝑤 threads in a particular round, demonstrating no bank
conflicts in that round.

We show that the elements in each subset 𝑅
(ℓ )
𝑗

are congruent to

the elements in 𝐷 𝑗 (mod 𝑑 ) . First observe that 𝐷 =
⋃𝑑−1

ℓ=0 𝐷ℓ is a

complete residue system modulo𝑤 . Hence, to construct a complete

residue system modulo𝑤 , we shift subsets so that each resulting

set 𝑅′
𝑗
contains a single partition that is congruent to a unique 𝐷ℓ .

Lemma 2. Let 𝑗 ′ ∈ {0, 1, . . . , 𝑑 − 1} such that 𝑗 ≡ 𝑗 ′ (mod 𝑑)
(i.e., 𝑗 = 𝑞𝑑 + 𝑗 ′ for some 𝑞 ∈ Z). Consider the sets 𝑅 (ℓ )

𝑗
and 𝐷 𝑗 ′ .

(1) For all 𝑟𝑎 ∈ 𝑅
(ℓ )
𝑗

, there exists 𝑑𝑏 ∈ 𝐷 𝑗 ′ such that, 𝑟𝑎 ≡ 𝑑𝑏

(mod 𝑤).
(2) For all 𝑟𝑎, 𝑟𝑏 ∈ 𝑅

(ℓ )
𝑗

such that 𝑟𝑎 ≠ 𝑟𝑏 , 𝑟𝑎 . 𝑟𝑏 (mod 𝑤).

Proof. Proof of (1): By the definition of the greatest common

divisor,
𝐸
𝑑
∈ Z. Hence, 𝑟𝑎 = 𝑗 + ( ℓ𝑤

𝑑
+ 𝑎)𝐸 = 𝑗 + ℓ𝑤𝐸

𝑑
+ 𝑎 · 𝐸

𝑑
· 𝑑 ≡

𝑗+𝑎·𝐸
𝑑
·𝑑 (mod 𝑤). Thus, there exists𝑎′ ∈ Z𝑤 such that 0 ≤ 𝑎′ < 𝑤

𝑑

and 𝑎 · 𝐸
𝑑
≡ 𝑎′ (mod 𝑤). If 𝑗 < 𝑑 , then 𝑟𝑎 ≡ 𝑗 +𝑎′𝑑 (mod 𝑤) ≡ 𝑑𝑎′

(mod 𝑤). Otherwise, 𝑗 ≥ 𝑑 and there exists 𝑞 ∈ Z such that 𝑗 =

𝑞𝑑 + 𝑗 ′, therefore, 𝑟𝑎 ≡ 𝑞𝑑 + 𝑗 ′ + 𝑎′𝑑 (mod 𝑤) ≡ 𝑑𝑞+𝑎′ (mod 𝑤/𝑑 )
(mod 𝑤).

Proof of (2): We have that 𝑟𝑎 = 𝑗 + ( ℓ𝑤
𝑑

+ 𝑎)𝐸 ≡ 𝑗 + 𝑎 · 𝐸
𝑑
· 𝑑

(mod 𝑤) ≡ 𝑗 + 𝑎′𝑑 (mod 𝑤) and 𝑟𝑏 = 𝑗 + ( ℓ𝑤
𝑑

+𝑏)𝐸 ≡ 𝑗 +𝑏 · 𝐸
𝑑
· 𝑑

(mod 𝑤) ≡ 𝑗 + 𝑏′𝑑 (mod 𝑤), for some 𝑎′, 𝑏′ ∈ Z𝑤
𝑑
. Therefore, it

suffices to show that 𝑎′ . 𝑏′ (mod 𝑤/𝑑). Assume for the sake

of contradiction, that 𝑎′ ≡ 𝑏′ (mod 𝑤/𝑑). It follows from Corol-

lary 18, that gcd( 𝑤
𝑑
, 𝐸
𝑑
) = 1, and hence from Corollary 16, 𝑎′ ≡ 𝑏′

(mod 𝑤/𝑑) =⇒ 𝑎

(
𝐸
𝑑

)
≡ 𝑏

(
𝐸
𝑑

)
(mod 𝑤/𝑑) =⇒ 𝑎 ≡ 𝑏

(mod 𝑤/𝑑) =⇒ 𝑎 . 𝑏 (mod 𝑤/𝑑), since 0 ≤ 𝑎, 𝑏 < 𝑤
𝑑
, which is

a contradiction. □

Corollary 3. Let 𝑅′
𝑗
= 𝑅

(0)
𝑗

+𝑅 (1)
𝑗+1 (mod 𝐸 ) +𝑅

(2)
𝑗+2 (mod 𝐸 ) + . . .+

𝑅
(𝑑−1)
𝑗+𝑑−1 (mod 𝐸 ) . 𝑅

′
𝑗
is a complete residue system modulo𝑤 .

Proof. It follows from Lemma 2 that each partition of 𝑅′
𝑗
is

congruent to 𝐷 𝑗 ′ . Since 𝑅′
𝑗
is the union of consecutive indexed

partitions (in a circular manner), each partition is congruent to

a unique 𝐷 𝑗 ′ . Therefore, 𝑅
′
𝑗
is a complete residue system modulo

𝑤 . □

Lemma 4. Consider the last element in 𝑅
(ℓ )
𝑗

, denoted 𝑎, and the

first element in 𝑅
(ℓ+1)
𝑗+1 (mod 𝐸 ) , denoted 𝑏. The difference (𝑏 − 𝑎) is

(𝐸 + 1), if 𝑗 < (𝐸 − 1), and 1 otherwise.

Proof. Case 1: 𝑗 < 𝐸 − 1 =⇒ 𝑏 − 𝑎 =

(
𝑗 + 1 +

(
(ℓ+1)𝑤

𝑑

)
𝐸

)
−(

𝑗 +
(
(ℓ+1)𝑤

𝑑
− 1

)
𝐸

)
= 𝐸 + 1.

Case 2: 𝑗 = 𝐸 − 1 =⇒ 𝑏 − 𝑎 =

((
(ℓ+1)𝑤

𝑑

)
𝐸

)
−(

(𝐸 − 1) +
(
(ℓ+1)𝑤

𝑑
− 1

)
𝐸

)
= 1. □

Lemma 4 shows that for 0 ≤ 𝑗 ≤ 𝐸−𝑑 , the distance between all el-
ements in𝑅′

𝑗
is at least 𝐸; and for 𝐸−𝑑 < 𝑗 < 𝐸, the distance between

all elements in 𝑅′
𝑗
is at least 𝐸 except for a single pair of neighboring

elements (i.e., a distance of 1). Ideally, we want the access pattern

to match the one used in Section 3.1, so that the elements in 𝑅′
𝑗
are

separated by a distance of exactly 𝐸. By construction of 𝑅′
𝑗
, any ele-

ment indexed at location 𝑘 ∈ {0, 1, . . . ,𝑤𝐸−1} will be read in round
𝑗 ≡ 𝑘 −

⌊
𝑘𝑑
𝑤𝐸

⌋
(mod 𝐸). Notice that for 𝑘 = ℓ · 𝑤𝐸

𝑑
, the element

indexed at 𝑘 is read in round ℓ · 𝑤𝐸
𝑑

−
⌊
ℓ · 𝑤𝐸

𝑑
· 𝑑
𝑤𝐸

⌋
= ℓ · 𝑤𝐸

𝑑
−ℓ ≡ −ℓ

(mod 𝐸). Furthermore for 𝑥 ∈ {0, 1, . . . , 𝑤𝐸
𝑑

− 1}, the element at

index (𝑘 +𝑥) is read in round 𝑥 − ℓ (mod 𝐸). Intuitively, each parti-

tion of

(
𝑤𝐸
𝑑

)
elements has an access pattern that is circular shifted

by ℓ rounds relative to the access pattern of the 0-th partition (ele-

ments indexed {0, 1, . . . , 𝑤𝐸
𝑑

− 1}). Therefore, we align the accesses

to elements in the ℓ-th partition by performing a circular shift of ℓ
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locations. After shifting elements, any element originally indexed

at location 𝑘 is read in round 𝑗 ≡ 𝑘 (mod 𝐸). As in Section 3.1, to

resolve read conflicts between lists, we additionally reverse the or-

der of the elements in 𝐵. Figure 3 illustrates an example of accesses

for values of𝑤 and 𝐸 that are not coprime.

3.3 Thread Block
In this section we extend our algorithm to processing a thread block

that consists of 𝑢 threads (organized into 𝑢/𝑤 warps).

Consider an arbitrary warp 𝑣 ∈ {0, 1, . . . , 𝑢𝑤 −1} in a thread block
and let 𝛼𝑣 and 𝛽𝑣 be the indices of the first elements in the 𝐴 list

and 𝐵 list for the warp, respectively. Since each warp processes𝑤𝐸

elements, there are at most 𝑣𝑤𝐸 elements from the 𝐴 list assigned

to the previous (𝑣 − 1) warps. Hence, 𝛼𝑣 ∈ {0, 1, . . . , 𝑣𝑤𝐸 − 1}. We

extend the permutation used in Section 3.1 to reverse all elements

in the 𝐵 list for the full thread block. After this reversal, 𝛽𝑣 =

(𝑢𝑤𝐸 − 1) − (𝑣𝑤𝐸 −𝛼𝑣) = (𝑢 − 𝑣)𝑤𝐸 +𝛼𝑣 − 1. Let |𝐴𝑣 |, |𝐵𝑣 | ∈ Z+ be

the number of elements in the 𝐴 and 𝐵 list assigned to warp 𝑣 , i.e.,

|𝐴𝑣 | + |𝐵𝑣 | = 𝑤𝐸, or equivalently, |𝐵𝑣 | = 𝑤𝐸 − |𝐴𝑣 |. For warp 𝑣 , the
elements of the 𝐴 list start in memory bank 𝛼𝑣 (mod 𝑤) and end

in memory bank 𝛼𝑣 + |𝐴𝑣 | − 1 (mod 𝑤). And, the elements of the 𝐵

list end in memory bank (𝑢 − 𝑣)𝑤𝐸 +𝛼𝑣 − 1− (|𝐵𝑣 | − 1) ≡ 𝛼𝑣 + |𝐴𝑣 |
(mod 𝑤) and start in memory bank (𝑢 − 𝑣)𝑤𝐸 + 𝛼𝑣 − 1 ≡ 𝛼𝑣 − 1

(mod 𝑤).
Therefore, each warp can view the resulting memory layout as

𝑤𝐸 elements stored in contiguous memory locations (starting in an

arbitrary memory bank). For values of 𝐸 such that gcd(𝑤, 𝐸) > 1

(i.e., not coprime), the permutation 𝜌 is similarly extended where

each partition ℓ ∈ {0, 1, . . . , 𝑢𝑑𝑤 − 1} of
(
𝑤𝐸
𝑑

)
elements are circular

shifted by ℓ (mod 𝑑) positions, with accesses in each partition

shifted accordingly. Figure 8 illustrates an example of accesses for

a full thread block.

4 WORST-CASE INPUTS
Although the mergesort implementation in the state-of-the-art

Thrust library [38] has been shown empirically to perform only 2

to 3 bank conflicts on average on random inputs [29], merging of

two sorted lists𝐴𝑖 and 𝐵𝑖 is a deterministic process. Hence, a careful

design of the input permutation could result in a large number of

bank conflicts in the worst case. In our previous work [8] we pre-

sented an algorithm that generated such a worst-case permutation.

However, our algorithm was restricted to the values of 𝑤 and 𝐸,

such that 𝑤 is a power of 2, 𝑑 = gcd(𝑤, 𝐸) = 1, and
𝑤
2

< 𝐸 < 𝑤 .

The task of generating worst-case inputs for other values of𝑤 and

𝐸 was left as an open problem.

In this section, building on our observations in Section 3.2, we

generalize this strategy to an arbitrary 𝑑 = gcd(𝑤, 𝐸) > 1, extend

the parameter𝑤 to an arbitrary integer, and extend the range of 𝐸

to 1 < 𝐸 ≤ 𝑤 . For a visualization of our inputs, see Figure 4.

Without loss of generality, consider an arbitrary warp with |𝐴| =⌈
𝐸
2

⌉
𝑤 and |𝐵 | =

⌊
𝐸
2

⌋
𝑤 . Our approach is to divide the𝑤𝐸 elements

into 𝑑 subproblems of
𝑤𝐸
𝑑

elements and
𝑤
𝑑
threads, and construct

worst-case inputs for each subproblem independently. Without

loss of generality, we consider

⌈
𝐸
2𝑑

⌉
𝑤 elements of 𝐴 and

⌊
𝐸
2𝑑

⌋
𝑤

elements of 𝐵. By Euclid’s Division Lemma, there exist unique

positive integers 𝑞 and 𝑟 such that 0 ≤ 𝑟 < 𝐸 and𝑤 = 𝑞𝐸+𝑟 . For 𝑖 =

{1, 2, . . . , 𝐸
𝑑
− 1}, we define 𝑠𝑖 = 𝑖

(
𝑟
𝑑

)
(mod 𝐸/𝑑), 𝑥𝑖 =

(
𝐸
𝑑
− 𝑠𝑖

)
𝑑 ,

𝑦𝑖 = 𝑠𝑖 · 𝑑 , and 𝑆 = (𝑎𝑖 , 𝑏𝑖 ) to be a sequence, such that

𝑎𝑖 =

{
𝑥𝑖 if 𝑖 is even

𝑦𝑖 otherwise

𝑏𝑖 =

{
𝑥𝑖 if 𝑖 is odd

𝑦𝑖 otherwise.

Lemma 5. 𝑠𝑖 ≠ 𝑠 𝑗 for any 𝑖, 𝑗 ∈ {1, 2, . . . , 𝐸
𝑑
− 1} such that 𝑖 ≠ 𝑗 .

Proof. Assume, for the sake of contradiction, that 𝑠𝑖 = 𝑠 𝑗 .

From Lemma 17,𝑑 = gcd(𝑤, 𝐸) = gcd(𝐸, 𝑟 ); and from Lemma 18,

gcd

(
𝑤
𝑑
, 𝐸
𝑑

)
= 1 and gcd

(
𝐸
𝑑
, 𝑟
𝑑

)
= 1. Then, it follows fromLemma 16

that 𝑠𝑖 = 𝑠 𝑗 =⇒ 𝑖

(
𝑟
𝑑

)
≡ 𝑗

(
𝑟
𝑑

)
(mod 𝐸/𝑑) =⇒ 𝑖 ≡ 𝑗

(mod 𝐸/𝑑) =⇒ 𝑖 = 𝑗 , which is a contradiction. □

Lemma 6.
𝐸
𝑑
− 𝑠𝑖 = 𝑠 𝐸

𝑑
−𝑖 for all 𝑖 ∈ {1, 2, . . . , 𝐸

𝑑
− 1}.

Proof.
𝐸
𝑑
− 𝑠𝑖 =

𝐸
𝑑
−
(
𝑖

(
𝑟
𝑑

)
(mod 𝐸/𝑑)

)
≡(

𝐸
𝑑
− 𝑖

) (
𝑟
𝑑

)
(mod 𝐸/𝑑) = 𝑠 𝐸

𝑑
−𝑖 . □

Lemma 7. For all 𝑖 ∈ {1, 2, . . . , 𝐸
𝑑
− 2}:

𝑥𝑖 + 𝑦𝑖+1 =
{
𝑟 if 𝑥𝑖 < 𝑟 ⇐⇒ 𝑠𝑖 >

𝐸
𝑑
− 𝑟

𝑑

𝐸 + 𝑟 otherwise.

Proof. (Note that 𝑥𝑖 = 𝑟 ⇐⇒ 𝑖 = 𝐸
𝑑
− 1, therefore, there are

only two cases.)

Case 1: Assume 𝑥𝑖 < 𝑟 ⇐⇒ 𝑠𝑖 >
𝐸
𝑑
− 𝑟
𝑑

=⇒ 𝑠𝑖+1 = 𝑠𝑖 + 𝑟
𝑑
− 𝐸
𝑑
∴

𝑥𝑖 + 𝑦𝑖+1 =
(
𝐸
𝑑
− 𝑠𝑖

)
𝑑 + 𝑠𝑖+1 · 𝑑 =

(
𝐸
𝑑
− 𝑠𝑖 + 𝑠𝑖 + 𝑟

𝑑
− 𝐸

𝑑

)
𝑑 = 𝑟 .

Case 2: Assume 𝑥𝑖 > 𝑟 ⇐⇒ 𝑠𝑖 <
𝐸
𝑑
− 𝑟

𝑑
=⇒ 𝑠𝑖+1 = 𝑠𝑖 + 𝑟

𝑑
∴

𝑥𝑖 + 𝑦𝑖+1 =
(
𝐸
𝑑
− 𝑠𝑖

)
𝑑 + 𝑠𝑖+1 · 𝑑 =

(
𝐸
𝑑
− 𝑠𝑖 + 𝑠𝑖 + 𝑟

𝑑

)
𝑑 = 𝐸 + 𝑟 . □

At a high level, our worst-case construction algorithm will con-

struct a sequence 𝑇 from 𝑆 , consisting of tuples, such that the 𝑖-th

tuple (𝑎𝑖 , 𝑏𝑖 ) ∈ 𝑇 , will correspond to thread 𝑖 reading 𝑎𝑖 items from

list𝐴 and 𝑏𝑖 items from list 𝐵. In fact, a large number of threads will

be reading items only from list 𝐴 or list 𝐵, i.e., the corresponding

tuples will be of the form (𝐸, 0) or (0, 𝐸). If we visualize shared

memory as a𝑤 × 𝑁
𝑤 matrix, with𝑤 rows representing the𝑤 mem-

ory banks, the items corresponding to the tuples of the form (𝐸, 0)
or (0, 𝐸) will be aligned at the bottom 𝐸 rows. Thus, the threads

reading these items will be forced to perform a sequential scan of

the bottom 𝐸 banks, causing bank conflicts with each access. The

remaining tuples, which are exactly the tuples of 𝑆 , will be used to

help this alignment.

Formally, we construct a new sequence 𝑇 from 𝑆 as follows:

(1) Insert the tuple (𝑎1, 𝑏1) = (𝑦1, 𝑥1) = (𝑟, 𝐸 − 𝑟 ) of 𝑆 , followed
by 𝑞 tuples of (𝐸, 0);

(2) For 𝑖 = {1, 2, . . . , 𝐸
𝑑
− 2}, insert (𝑎𝑖+1, 𝑏𝑖+1) ∈ 𝑆 followed by:

• If 𝑥𝑖 +𝑦𝑖+1 = 𝑟 , insert 𝑞 tuples of (𝐸, 0) if 𝑖 is even or (0, 𝐸)
otherwise.

• If 𝑥𝑖 +𝑦𝑖+1 = 𝐸 +𝑟 , insert (𝑞− 1) tuples of (𝐸, 0) if 𝑖 is even
or (0, 𝐸) otherwise.

(3) Insert 𝑞 tuples of (𝐸, 0) if
(
𝐸
𝑑
− 1

)
is even or 𝑞 tuples of (0, 𝐸)

otherwise.
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Figure 3: An example of shared memory accesses performed by a warp in CF-Merge for𝑤 = 9, 𝐸 = 6, and 𝑑 = 3 (i.e., not coprime)
on an arbitrary input. Elements belonging to the 𝐴 list (𝐵 list) are colored yellow (blue). The red dotted lines separate partitions
of𝑤𝐸/𝑑 = 16 elements, that have been circular shifted by 0, 1, and 2 positions, respectively. Cell values correspond to the thread
IDs that access that cell. Cells colored green are the cells accessed by the𝑤 threads in a particular round, demonstrating no
bank conflicts in that round.

In total, we have inserted 2𝑞 + 𝑞

(
𝑟
𝑑
− 1

)
+ (𝑞 − 1)

(
𝐸
𝑑
− 𝑟

𝑑
− 1

)
tuples in addition to the

(
𝐸
𝑑
− 1

)
tuples of 𝑆 . Hence, |𝑇 | =

(
𝐸
𝑑
− 1

)
+

𝑞

(
𝑟
𝑑
+ 1

)
+ (𝑞 − 1)

(
𝐸
𝑑
− 𝑟

𝑑
− 1

)
= 𝑟

𝑑
+ 𝑞

(
𝐸
𝑑

)
= 𝑤

𝑑
.

Theorem 8. Using the sequence 𝑇 to assign elements to the
𝑤
𝑑

threads in the subproblem of
𝑤𝐸
𝑑

elements, we can align accesses that

result in {
𝐸2

𝑑
if 𝐸 ≤ 𝑤

2

1

2

(
𝐸2

𝑑
+ 2𝐸𝑟

𝑑
+ 𝐸 − 𝑟 2

𝑑
− 𝑟

)
otherwise

total bank conflicts.

Proof. In both cases, we count the number of bank conflicts in

the last 𝐸 shared memory banks, {𝑤 − 𝐸,𝑤 − 𝐸 + 1, . . . ,𝑤 − 1}.
Case 1: Assume 1 < 𝐸 ≤ 𝑤

2
⇐⇒ 𝑞 > 1. Since 𝑞 > 1, every col-

umn ends with (at least) a single scan of 𝐸 elements, thus, resulting

in a total of 𝐸

(
𝐸
𝑑

)
= 𝐸2

𝑑
bank conflicts.

Case 2: Assume
𝑤
2

< 𝐸 ≤ 𝑤 ⇐⇒ 𝑞 = 1. From Lemma 7,

we know that there are

(
𝐸
𝑑
− 1 −

(
𝐸
𝑑
− 𝑟

𝑑

))
=

(
𝑟
𝑑
− 1

)
pairs that

sum up to 𝑟 ; and

(
𝐸
𝑑
− 𝑟

𝑑
− 1

)
pairs that sum up to 𝐸 + 𝑟 = 𝑤 .

Hence,

(
𝑟
𝑑
− 1

)
columns end with a single scan of 𝐸 elements; and(

𝐸
𝑑
− 𝑟

𝑑
− 1

)
columns end with a partial scan of elements.

Recall that for 𝑖 ∈ {1, 2, . . . , 𝐸
𝑑
− 2}, 𝑥𝑖 + 𝑦𝑖+1 = 𝐸 + 𝑟 = 𝑤 if

𝑥𝑖 > 𝑟 ⇐⇒ 𝑠𝑖 <
𝐸
𝑑
− 𝑟

𝑑
. Thus, (𝑥𝑖 − 𝑟 ) elements are misaligned in

the corresponding column. In total, there are

𝐸
𝑑
− 𝑟

𝑑
−1∑︁

𝑖=1

𝑥𝑖 − 𝑟 =

𝐸
𝑑
− 𝑟

𝑑
−1∑︁

𝑖=1

((
𝐸

𝑑
− 𝑠𝑖

)
𝑑 − 𝑟

)
=

𝐸
𝑑
− 𝑟

𝑑
−1∑︁

𝑖=1

((
𝐸

𝑑
− 𝑟

𝑑
− 𝑠𝑖

)
𝑑

)
= 𝑑 + 2𝑑 + 3𝑑 + . . . +

(
𝐸

𝑑
− 𝑟

𝑑
− 1

)
𝑑

= 𝑑

𝐸
𝑑
− 𝑟

𝑑
−1∑︁

𝑖=1

𝑖

=
1

2

(
𝐸2

𝑑
− 2𝐸𝑟

𝑑
− 𝐸 + 𝑟2

𝑑
+ 𝑟

)
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Figure 4: Visualization of the worst case inputs for Thrust
mergesort (using our generalized strategy described in Sec-
tion 4) for𝑤 = 12. The left figure shows the inputs for 𝐸 = 5

(i.e., coprime) and the right shows 𝐸 = 9 (i.e., not coprime).
Cells are labeled with the thread ID that accesses that cell.
In both figures, the elements residing in the last 𝐸 mem-
ory banks are aligned to cause bank conflicts when threads
perform sequential merge in shared memory. Red cells cor-
respond to the accesses that contribute to the worst-case
number of bank conflicts.

misaligned elements. Therefore, there are a total of

1

2

(
𝐸2

𝑑
+ 2𝐸𝑟

𝑑
+ 𝐸 − 𝑟 2

𝑑
− 𝑟

)
bank conflicts. Note that 𝑑 = 𝐸 =⇒ 𝑟 =

0 and, consequently,
1

2

(
𝐸2

𝑑
− 2𝐸𝑟

𝑑
− 𝐸 + 𝑟 2

𝑑
+ 𝑟

)
= 1

2
(𝐸 − 𝐸) = 0

elements are misaligned. □

For the symmetric case, where the subproblem contains

⌊
𝐸
2𝑑

⌋
𝑤

elements of 𝐴 and

⌈
𝐸
2𝑑

⌉
𝑤 elements of 𝐵, the tuple values of 𝑇 are

switched. Therefore, combining all 𝑑 subproblems together results

in a total of{
𝐸2 if 1 < 𝐸 ≤ 𝑤

2

1

2

(
𝐸2 + 2𝐸𝑟 + 𝐸𝑑 − 𝑟2 − 𝑟𝑑

)
otherwise

bank conflicts.

5 EXPERIMENTS
We evaluate the performance of our bank conflict free load-balanced

dual subsequence gather by incorporating the algorithm into the

implementation of pairwise merge sort provided in Thrust [38],

which we refer to as CF-Merge. In our experiments, we compare

CF-Merge to the unmodified Thrust mergesort implementation on

both uniform random inputs and the constructed worst-case inputs

from Section 4.

Berney and Sitchinava [8] observed that Thrust uses the software

parameters 𝐸 = 17 and 𝑢 = 256, while the parameters 𝐸 = 15 and

𝑢 = 512 provide better performance, on random inputs. This per-

formance difference is attributed to the corresponding occupancy,
6

with 𝐸 = 15 and 𝑢 = 512 providing the optimal 100% theoretical

occupancy. Likewise, we compare the performance of these soft-

ware parameters. Note that for values of 𝐸 that are not coprime

with𝑤 = 32, the performance of Thrust is much worse, while the

runtime of CF-Merge will not be affected. Therefore, we are pre-

senting experiments for the values of 𝐸 that make Thrust run the

fastest. Other values of 𝐸 would make CF-Merge look comparably

even better.

Our implementation of CF-Merge [9] uses the thread block ap-

proach described in Section 3.3. As the permutations performed

only rely on information on the total size of each list, each thread

block reorders elements during the initial transfer from global mem-

ory into shared memory. Furthermore, because both 𝐸 = 15 and

𝐸 = 17 are coprime with 𝑤 = 32, only the coprime variant is im-

plemented. Once elements have been read into register space via

the load-balanced dual subsequence gather, threads process ele-

ments internally. In practice, on NVIDIA GPUs using the CUDA

compiler, register memory requires static access as dynamic access

to internal data are instead compiled into local memory space. One

solution is to use data-oblivious algorithm to implement the merge

in the registers and in our implementation we adopt the odd-even

transposition sort [25] provided in Thrust.

We conduct experiments using 𝑛 = {2𝑖𝐸 : 16 ≤ 𝑖 ≤ 26} 4-byte
integers on a NVIDIA RTX 2080 Ti featuring 4,352 total physical

cores, 11 GB of global memory, and 96 KiB of unified L1 cache and

shared memory (configured to be 32 KiB of L1 cache and 64 KiB of

shared memory, or vice versa) per streaming multiprocessor (SM).
7

All code is written using CUDA 11 [37] and compiled with the -O3
and -use_fast_math optimization flags. Runtimes are recorded via

cudaEventRecord, with the average across 10 runs being reported.

5.1 Results
Figure 5 shows the throughput results for both software parameters

on the constructed worst-case inputs. Results show that on these in-

puts, CF-Merge provides an average, mean, and maximum speedup

of 1.37, 1.45, and 1.47 for 𝐸 = 15 and𝑢 = 512; and 1.17, 1.23, and 1.25

for 𝐸 = 17 and 𝑢 = 256. This highlights the performance benefits

of CF-Merge, which uses the bank conflict free load-balanced dual

subsequence gather, compared to the unmodified Thrust imple-

mentation, which on these inputs incurs the asymptotic worst-case

number of bank conflicts. In contrast, on random inputs CF-Merge
achieves performance comparable to the unmodified Thrust, which

has been empirically shown previously to incur a small constant

number of bank conflicts (2 to 3) [29]. This illustrates that the run-

time overhead associated with performing the load-balanced dual

subsequence gather is only 2-3 additional memory accesses per

element. Using NVIDIA’s nvprof profiler we confirmed that our

implementation produces no bank conflicts during merging.

Overall, these results validate that CF-Merge eliminates the ob-

served slowdown incurred by bank conflicts in shared memory,

thereby providing fast runtimes on all possible inputs. Results for

6
Ratio of active warps to the maximum number of active warps, per SM.

7
GB = 10

9
bytes and KiB = 2

10
bytes.
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Figure 5: Throughput results (in elements per microsecond) for Thrust and CF-Merge on a NVIDIA RTX 2080 Ti using the
constructed worst-case inputs. Thrust results are in red and CF-Merge results are in blue. The short dashed lines represent
software parameters 𝐸 = 15 and 𝑢 = 512; and the long dashed lines represent software parameters 𝐸 = 17 and 𝑢 = 256. The x-axis
is displayed on a logarithmic scale.

both the constructed worst-case inputs and random inputs are

shown for each software parameter in Figure 6.

6 CONCLUSION
In this paper, we address the challenges associated with shared

memory performance and the analysis of worst-case scenarios

caused by bank conflicts in GPU algorithms. Leveraging the Dis-

tributed Memory Machine and principles from number theory we

provide a framework for designing and analyzing bank conflict free

algorithms on GPUs. In particular, we show that by using a sim-

ple technique we are able to eliminate all bank conflicts in Thrust

library’s implementation of mergesort.

Often in practice, algorithms designed to be efficient in the worst

case perform significantly worse than randomized algorithm. So

it is even more surprising that our technique results in virtually

the same running time as a heuristic approach in a highly-tuned

library implementation on a random input.

Our proposed approach, the load-balanced dual subsequence

gather, eliminates bank conflicts by efficiently loading contiguous

subarrays from shared memory into register files of individual

threads and once the data is in the registers, it can be processed

sequentially by individual threads without any bank conflicts. Ob-

serve that while the subarrays are merged in case of the mergesort,

once they are in registers, they can also be processed in some other

way, depending on the needs of a specific problem. Thus, our ap-

proach can be used to convert any algorithm that involves a parallel

scan of a pair of arrays into a bank conflict free algorithm.

A natural question to ask is whether we should care about de-

signing bank conflict free algorithms or focus on performance of the

implementations on the worst case inputs, if simple heuristics (like

selecting values of parameters that are coprime with the number

of memory banks) already perform well on random or “real world”

inputs? While this can be viewed as a philosophical question, every

undergraduate algorithms course emphasizes worst case analysis of

sequential algorithms. So why should it be ignored for algorithms

for GPUs? Moreover, bank conflict free algorithms are much easier

to analyze because without bank conflicts shared memory analysis

becomes equivalent to the analysis of PRAM algorithms. Thus, bank

conflict free algorithms allow us to better predict how the existing

collection of parallel algorithms would perform on GPUs.
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A NUMBER THEORY
Lemma 9. (Euclid’s Division Lemma) For any integers 𝑎 and 𝑏 such

that 𝑏 > 0, there exists unique integers 𝑞 and 𝑟 such that 0 ≤ 𝑟 < 𝑏

and 𝑎 = 𝑞𝑏 + 𝑟 .

Definition 10. Let 𝑎, 𝑏 ∈ Z and 𝑑 ∈ Z+, such that 𝑎 ≠ 𝑏 ≠ 0, We

say 𝑑 is the greatest common divisor of 𝑎 and 𝑏, denoted gcd(𝑎, 𝑏),
if

(1) 𝑑 is a common divisor of 𝑎 and 𝑏; and

(2) any integer 𝑐 that is a common divisor of 𝑎 and 𝑏 is also a

divisor of 𝑑 .

Theorem 11. Let 𝑎, 𝑏 ∈ Z, such that 𝑎 ≠ 𝑏 ≠ 0, gcd(𝑎, 𝑏) exists
and is unique.

Definition 12. Let 𝑎, 𝑏 ∈ Z, such that 𝑎 ≠ 𝑏 ≠ 0. If gcd(𝑎, 𝑏) = 1,

then 𝑎 and 𝑏 are coprime (also known as relatively prime or mutually

prime).

Definition 13. Let𝑚 ∈ Z+. The set 𝑅 = {𝑟0, 𝑟1, . . . , 𝑟𝑚−1} is a
complete residue system modulo𝑚 if the following are satisfied:

(1) For each 𝑖, 𝑗 ∈ {0, 1, . . . ,𝑚 − 1} such that 𝑖 ≠ 𝑗 , 𝑟𝑖 . 𝑟 𝑗
(mod 𝑚).

(2) For each 𝑛 ∈ Z, there exists 𝑟𝑖 ∈ 𝑅 such that 𝑛 ≡ 𝑟𝑖 (mod 𝑚).

Corollary 14. Let𝑚 ∈ Z+. The set Z𝑚 = {0, 1, 2, . . . ,𝑚 − 1} is a
complete residue system.

Definition 15. Let 𝑎, 𝑏 ∈ Z and 𝑚 ∈ Z+. If 𝑎𝑏 ≡ 1 (mod 𝑚),
then 𝑏 is an inverse of 𝑎 modulo𝑚.

Corollary 16. Let 𝑛 ∈ Z and𝑚 ∈ Z+. If gcd(𝑛,𝑚) = 1, then 𝑛

has a single unique inverse modulo𝑚.

Corollary 17. Let 𝑎, 𝑏 ∈ Z+, such that 𝑎 ≥ 𝑏, and let 𝑞, 𝑟 ∈ Z
such that, 𝑎 = 𝑞𝑏 + 𝑟 . gcd(𝑎, 𝑏) = gcd(𝑏, 𝑟 ).

Proof. For ease of notation, let 𝑑 = gcd(𝑎, 𝑏). By definition,

𝑑 | 𝑎 and 𝑑 | 𝑏, hence, there exists positive integers 𝑥,𝑦 such

that 𝑎 = 𝑑𝑥 and 𝑏 = 𝑑𝑦 =⇒ 𝑟 = 𝑎 − 𝑞𝑏 = 𝑑 (𝑥 − 𝑞𝑦). Thus,
𝑑 = gcd(𝑎, 𝑏) | 𝑟 and gcd(𝑎, 𝑏) ≤ gcd(𝑏, 𝑟 ). We use a similar

argument to show that gcd(𝑏, 𝑟 ) | 𝑎 and gcd(𝑏, 𝑟 ) ≤ gcd(𝑎, 𝑏).
Therefore, gcd(𝑎, 𝑏) = gcd(𝑏, 𝑟 ). □

Corollary 18. Let 𝑎, 𝑏 ∈ Z and 𝑑 = gcd(𝑎, 𝑏), gcd
(
𝑎
𝑑
, 𝑏
𝑑

)
= 1.

Proof. Assume 𝑐 is a positive common divisor of 𝑎 and 𝑏 such

that 𝑐 | 𝑎
𝑑
and 𝑐 | 𝑏

𝑑
. In other words,

𝑎/𝑑
𝑐 ∈ Z+ and

𝑏/𝑑
𝑐 ∈ Z+.

Hence, there exists 𝑥,𝑦 ∈ Z+ such that
𝑎
𝑑
= 𝑐𝑥 =⇒ 𝑎 = 𝑐𝑑𝑥 and

𝑏
𝑑
= 𝑐𝑦 =⇒ 𝑏 = 𝑐𝑑𝑦. Thus, 𝑐𝑑 is a positive common divisor of 𝑎

and 𝑏. Since 𝑑 is the greatest common divisor of 𝑎 and 𝑏, 𝑐 must be

equal to 1. Therefore, 𝑐 = 1 is the greatest common divisor of
𝑎
𝑑

and
𝑏
𝑑
. □

B SUPPLEMENTAL FIGURES

https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/index.html
https://docs.nvidia.com/cuda/index.html
https://github.com/thrust/thrust
https://github.com/thrust/thrust


SPAA ’25, July 28-August 1, 2025, Portland, OR, USA Berney and Sitchinava

0:

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

0

0

0

0

0

1

1

1

1

1

2

2

2

2

2

3

3

3

3

3

4

4

4

4

4

5

5

5

5

5

6

6

6

6

6

7

7

7

7

7

8

8

8

8

8

9

9

9

9

9

10

10

10

10

10

11

11

11

11

11

0:

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

0

0

1

1

1

1

2

2

3

3

3

4

5

5

5

6

6

6

7

7

9

9

9

9

10

10

10

10

11

11

0:

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

0

0

1

1

1

1

2

2

3

3

3

4

5

5

5

6

6

6

7

7

9

9

9

9

10

10

10

10

11

11

0:

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

0

0

1

1

1

1

2

2

3

3

3

4

5

5

5

6

6

6

7

7

9

9

9

9

10

10

10

10

11

11

0:

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

0

0

1

1

1

1

2

2

3

3

3

4

5

5

5

6

6

6

7

7

9

9

9

9

10

10

10

10

11

11

0

0

0

1

2

2

2

3

3

4

4

4

4

5

5

6

6

7

7

7

8

8

8

8

8

9

10

11

11

11

0

0

0

1

2

2

2

3

3

4

4

4

4

5

5

6

6

7

7

7

8

8

8

8

8

9

10

11

11

11

0

0

0

1

2

2

2

3

3

4

4

4

4

5

5

6

6

7

7

7

8

8

8

8

8

9

10

11

11

11

0

0

0

1

2

2

2

3

3

4

4

4

4

5

5

6

6

7

7

7

8

8

8

8

8

9

10

11

11

11

round 0 round 1 round 2

round 3 round 4

Figure 7: Depiction of the read stalls caused by threads in a warp accessing up to 2 elements per round for𝑤 = 12, 𝐸 = 5, and
𝑑 = 1 (i.e., coprime) on arbitrary input. Cell numbers correspond to the thread that performs the access. Elements colored red
cause a stall due to threads needing to access 2 elements in each round.
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Figure 8: An example of shared memory accesses performed by a thread block in CF-Merge for 𝑢 = 18, 𝑤 = 6, 𝐸 = 4, and 𝑑 = 2

(i.e., not coprime) on an arbitrary input. Elements belonging to the 𝐴 list (𝐵 list) are colored yellow (blue). The red dotted
lines separate partitions of𝑤𝐸/𝑑 = 12 elements, that have been circular shifted by 0 and 1 positions, respectively. Cell values
correspond to the thread IDs that access that cell. Cells colored green are the cells accessed by the threads in a particular round,
demonstrating no bank conflicts in that round. Recall that bank conflicts potentially occur only by accesses by the threads of
the same warp, i.e., {0, . . . , 5}, {6, . . . , 11}, {12, . . . , 17}.
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